Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Drug Dev Ind Pharm ; 46(3): 471-483, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32057274

RESUMO

Purpose: The objective of the research undertaken was to develop the Riluzole (RIZ) nanoparticles drug delivery system using Transferrin (Tf) as a ligand in the brain.Method: RIZ-loaded chitosan nanoparticles and RIZ-Tf chitosan (CS) nanoparticles (RIZ CSNPs and RIZ-Tf CSNPs) were formulated and compared for particles size, size distribution, encapsulation efficiency, and surface morphology, respectively. The in vitro drug release, permeation, pharmacokinetic, biochemical, and pharmacodynamic experiments were done to assess the improvement in in vivo fate and efficacy of RIZ.Results: The size of optimized RIZ CSNPs was found to be 173.6 ± 2.23 nm and polydispersity index (PDI) of 0.264 ± 0.002 while that of RIZ-Tf CSNPs was 207 ± 2.49 nm and 0.406 ± 0.002. In vitro release was found to be 86.15 ± 7.316% and 91.1 ± 5.836%, respectively, while permeability coefficient was found to be 4 × 10-2 and 4.2 × 10-2 cm/s for RIZ CSNPs and RIZ-Tf CSNPs. The biochemical analysis studies revealed that oxidative stress was significantly decreased in case of RIZ CSNPs and RIZ-Tf CSNPs (p < 0.01) treated groups. The antianxiety effect and the memory restoration were evident in pharmacodynamic studies (p < 0.05) of the prepared formulations.Conclusion: The results of pharmacokinetic studies demonstrated the remarkable brain delivery of RIZ-Tf CSNPs through intranasal route as compared to the RIZ solution.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Riluzol/administração & dosagem , Administração Intranasal , Animais , Ansiedade/tratamento farmacológico , Encéfalo/metabolismo , Quitosana/química , Modelos Animais de Doenças , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Masculino , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Tamanho da Partícula , Ratos , Ratos Wistar , Riluzol/farmacocinética , Riluzol/farmacologia , Distribuição Tecidual , Transferrina/química
2.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178401

RESUMO

BACKGROUND: Autophagy is reported as a survival or death-promoting pathway that is highly debatable in different kinds of cancer. Here, we examined the co-effect of cold atmospheric plasma (CAP) and silymarin nanoemulsion (SN) treatment on G-361 human melanoma cells via autophagy induction. METHODS: The temperature and pH of the media, along with the cell number, were evaluated. The intracellular glucose level and PI3K/mTOR and EGFR downstream pathways were assessed. Autophagy-related genes, related transcriptional factors, and autophagy induction were estimated using confocal microscopy, flow cytometry, and ELISA. RESULTS: CAP treatment increased the temperature and pH of the media, while its combination with SN resulted in a decrease in intracellular ATP with the downregulation of PI3K/AKT/mTOR survival and RAS/MEK transcriptional pathways. Co-treatment blocked downstream paths of survival pathways and reduced PI3K (2 times), mTOR (10 times), EGFR (5 times), HRAS (5 times), and MEK (10 times). CAP and SN co-treated treatment modulates transcriptional factor expressions (ZKSCAN3, TFEB, FOXO1, CRTC2, and CREBBP) and specific genes (BECN-1, AMBRA-1, MAP1LC3A, and SQSTM) related to autophagy induction. CONCLUSION: CAP and SN together activate autophagy in G-361 cells by activating PI3K/mTOR and EGFR pathways, expressing autophagy-related transcription factors and genes.


Assuntos
Autofagia/efeitos dos fármacos , Emulsões/farmacologia , Melanoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Gases em Plasma/farmacologia , Silimarina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
3.
AAPS PharmSciTech ; 21(7): 261, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32974738

RESUMO

The present research encompasses a quality by design approach for fabricating lipid architectonics (LA) of an antiretroviral drug (Elvitegravir: EVR) to overcome inherent challenges of EVR to curtail its bioavailability issues. Comparative development strategy employing Box-Behnken design was undertaken between high-pressure homogenization technique and melt emulsification followed by probe sonication method, wherein the later was selected for engineering the EVR-LA. Particle size, entrapment efficiency and drug loading for EVR-LA were 84.6 ± 2.3 nm, 90.7 ± 1.8% and 8.9 ± 0.7% respectively. In vitro release studies established the supremacy of EVR-LA when compared with drug suspension (EVR-DS) by having a cumulative drug release of 96.89 ± 2.5% in pH 1.2, 89.84 ± 2.4% in pH 6.8 and 86.64 ± 2.5% in pH 7.4. Gut permeation studies revealed 19-fold increment in permeation by EVR-LA attributable to intrinsic permeation enhancing and efflux protein inhibitory activity of the lipids and surfactants incorporated. The result was validated by confocal study which exhibited enhanced permeation by EVR-LA. Dissolution study, conducted in fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) media to ascertain the effect of food, demonstrated boosted absorption from FeSSIF media. Stability study was conducted in SGF pH 1.2, FaSSIF and FeSSIF media. The lipolysis study, conducted to determine in vivo fate of EVR, revealed 27-fold increment in solubilization potential from EVR-LA (72.43 ± 2.6%). Thus, EVR-LA exhibited remarkable in vitro results by improving gut permeation and solubilization fate along with enhanced lymphatic uptake, thereby leading to prospective in vivo fate.


Assuntos
Fármacos Anti-HIV/química , Composição de Medicamentos , Infecções por HIV/tratamento farmacológico , Lipídeos/química , Animais , Fármacos Anti-HIV/uso terapêutico , Disponibilidade Biológica , Liberação Controlada de Fármacos , Jejum/metabolismo , Humanos , Lipólise , Masculino , Tamanho da Partícula , Estudos Prospectivos , Solubilidade , Tensoativos
4.
Pharm Biol ; 58(1): 184-199, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32083987

RESUMO

Context: Nephrotoxicity is a renal dysfunction that arises from direct exposure to environmental chemicals or as a side effect of therapeutic drugs. Boerhaavia diffusa Linn. (Nyctaginaceae), Rheum emodi Wall. Ex. Meissn. (Polygonaceae), Nelumbo nucifera Gaertn. (Nelumbonaceae) and Crataeva nurvala Buch-Ham. (Capparidaceae) are well-recognized medicinal plants of Indian traditional system of medicine used for kidney disorders.Objectives: The present investigation was undertaken to develop a chromatographically characterized polyherbal combination and to evaluate its nephroprotective activity.Materials and methods: Roots of B. diffusa and R. emodi, flowers of N. nucifera and stem bark of C. nurvala were extracted by decoction using 70% ethanol. Response surface methodology (RSM) was used for the optimization of extraction parameters. Polyherbal combinations with different doses (150-300 mg/kg) were tested against methotrexate-induced nephrotoxicity in Wistar rats.Results: The optimized extract contained 27% phenols and 15% flavonoids, which showed 75% 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging potential. Based on the retention time of high-performance liquid chromatography (HPLC) analysis, 17 out of 122 constituents were found common in all extracts and combinations. Two combinations showed significantly higher (p ≤ 0.05) DPPH scavenging potential and xanthine oxidase inhibition. The half maximal inhibitory concentration (IC50) of the best combination for DPPH scavenging and xanthine oxidase inhibition were 80 and 74 µg/mL, respectively. Treatment of methotrexate-induced nephrotoxic rats with polyherbal combination significantly (p ≤ 0.05) improved the kidney function markers, oxidative stress markers and histological parameters.Discussion and conclusion: The developed combination was found to be effective in nephrotoxicity; it can be explored further for the management of drug-induced nephrotoxicity and other chronic kidney diseases.


Assuntos
Antioxidantes/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Metotrexato/toxicidade , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/química , Simulação por Computador , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química , Ratos Wistar , Xantina Oxidase/antagonistas & inibidores
5.
Cell Commun Signal ; 17(1): 52, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126298

RESUMO

BACKGROUND: Recent studies claimed the important role of cold atmospheric plasma (CAP) with nanotechnology in cancer treatments. In this study, silymarin nanoemulsion (SN) was used along with air CAP as therapeutic agent to counter human melanoma. METHODS: In this study, we examined the combined treatment of CAP and SN on G-361 human melanoma cells by evaluating cellular toxicity levels, reactive oxygen and nitrogen species (RONS) levels, DNA damage, melanoma-specific markers, apoptosis, caspases and poly ADP-ribose polymerase-1 (PARP-1) levels using flow cytometer. Dual-treatment effects on the epithelial-mesenchymal transition (EMT), Hepatocyte growth factor (HGF/c-MET) pathway, sphere formation and the reversal of EMT were also assessed using western blotting and microscopy respectively. SN and plasma-activated medium (PAM) were applied on tumor growth and body weight and melanoma-specific markers and the mesenchymal markers in the tumor xenograft nude mice model were checked. RESULTS: Co-treatment of SN and air CAP increased the cellular toxicity in a time-dependent manner and shows maximum toxicity at 200 nM in 24 h. Intracellular RONS showed significant generation of ROS (< 3 times) and RNS (< 2.5 times) in dual-treated samples compared to control. DNA damage studies were assessed by estimating the level of γ-H2AX (1.8 times), PD-1 (> 2 times) and DNMT and showed damage in G-361 cells. Increase in Caspase 8,9,3/7 (> 1.5 times), PARP level (2.5 times) and apoptotic genes level were also observed in dual treated group and hence blocking HGF/c-MET pathway. Decrease in EMT markers (E-cadherin, YKL-40, N-cadherin, SNAI1) were seen with simultaneously decline in melanoma cells (BRAF, NAMPT) and stem cells (CD133, ABCB5) markers. In vivo results showed significant reduction in SN with PAM with reduction in tumor weight and size. CONCLUSIONS: The use of air CAP using µ-DBD and the SN can minimize the malignancy effects of melanoma cells by describing HGF/c-MET molecular mechanism of acting on G-361 human melanoma cells and in mice xenografts, possibly leading to suitable targets for innovative anti-melanoma approaches in the future.


Assuntos
Antioxidantes/uso terapêutico , Carcinogênese/efeitos dos fármacos , Fator de Crescimento de Hepatócito/metabolismo , Melanoma/tratamento farmacológico , Gases em Plasma/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Silimarina/uso terapêutico , Animais , Antioxidantes/farmacologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal , Humanos , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Nus , Gases em Plasma/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Silimarina/farmacologia
6.
AAPS PharmSciTech ; 20(2): 60, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30623263

RESUMO

The therapeutic functionality of innumerable antiretroviral drugs is supposedly obscured owing to their low metabolic stability in the gastrointestinal tract and poor solubilization property leading to poor oral bioavailability. Dictated by such needs, lipid-based formulations could be tailored using nanotechnology which would be instrumental in ameliorating the attributes of such drugs. The stupendous advantages which lipid nanocarriers offer including improved drug stability and peroral bioavailability coupled with sustained drug release profile and feasibility to incorporate wide array of drugs makes it a potential candidate for pharmaceutical formulations. Furthermore, they also impart targeted drug delivery thereby widening their arena for use. Therefore, the review will encompass the details pertaining to numerous lipid nanocarriers such as nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, and so on. These nanocarriers bear the prospective of improving the mucosal adhesion property of the drugs which ultimately upgrades its pharmacokinetic profile. The biodegradable and physiological nature of the lipid excipients used in the formulation is the key parameter and advocates for their safe use. Nevertheless, these lipid-based nanocarriers are amenable to alterations which could be rightly achieved by changing the excipients used or by modifying the process parameters. Thus, the review will systematically envisage the impending benefits and future perspectives of different lipid nanocarriers used in oral delivery of antiretroviral drugs.


Assuntos
Antirretrovirais/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Lipídeos , Nanopartículas/metabolismo , Administração Oral , Antirretrovirais/administração & dosagem , Disponibilidade Biológica , Portadores de Fármacos/administração & dosagem , Absorção Gastrointestinal/efeitos dos fármacos , Absorção Gastrointestinal/fisiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Humanos , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Nanotecnologia/tendências , Estudos Prospectivos
7.
Nanotechnology ; 27(43): 435101, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27655136

RESUMO

Selegiline is a monoamine oxidase B (MAO-B) inhibitor and is used in the treatment of Parkinson's disease. The main problem associated with its oral administration is its low oral bioavailability (10%) due to its poor aqueous solubility and extensive first pass metabolism. The aim of the present research work was to develop a nanoemulsion loaded with selegiline for direct nose-to-brain delivery for the better management of Parkinson's disease. A quality by design (QbD) approach was used in a statistical multivariate method for the preparation and optimization of nanoemulsion. In this study, four independent variables were chosen, in which two were compositions and two were process variables, while droplet size, transmittance, zeta potential and drug release were selected as response variables. The optimized formulation was assessed for efficacy in Parkinson's disease using behavioural studies, namely forced swimming, locomotor, catalepsy, muscle coordination, akinesia and bradykinesia or pole test in Wistar rats. The observed droplet size, polydispersity index (PDI), refractive index, transmittance, zeta potential and viscosity of selegiline nanoemulsion were found to be 61.43 ± 4.10 nm, 0.203 ± 0.005, 1.30 ± 0.01, 99.80 ± 0.04%, -34 mV and 31.85 ± 0.24 mPas respectively. Surface characterization studies demonstrated a spherical shape of nanoemulsion which showed 3.7 times enhancement in drug permeation as compared to drug suspension. The results of behaviour studies showed that treatment of haloperidol induced Parkinson's disease in rats with selegiline nanoemulsion (administered intranasally) showed significant improvement in behavioural activities in comparison to orally administered drug. These findings demonstrate that nanoemulsion could be a promising new drug delivery carrier for intranasal delivery of selegiline in the treatment of Parkinson's disease.


Assuntos
Doença de Parkinson , Animais , Comportamento Animal , Emulsões , Nanoestruturas , Bulbo Olfatório , Ratos , Ratos Wistar , Selegilina , Solubilidade
8.
Nanotechnology ; 27(37): 375101, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27491690

RESUMO

PURPOSE: Oxidative stress is the leading cause in the pathogenesis of Parkinson's disease. Rutin is a naturally occurring strong antioxidant molecule with wide therapeutic applications. It suffers from the problem of low oral bioavailability which is due to its poor aqueous solubility. METHODS: In order to increase the solubility self-nanoemulsifying drug delivery systems (SNEDDS) of rutin were prepared. The oil, surfactant and co-surfactant were selected based on solubility/miscibility studies. Optimization was done by a three-factor, four-level (34) Box-Behnken design. The independent factors were oil, surfactant and co-surfactant concentration and the dependent variables were globule size, self-emulsification time, % transmittance and cumulative percentage of drug release. The optimized SNEDDS formulation (RSE6) was evaluated for various release studies. Antioxidant activity was assessed by various in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl and reducing power assay. Oxidative stress models which had Parkinson's-type symptoms were used to determine the antioxidant potential of rutin SNEDDS in vivo. Permeation was assessed through confocal laser scanning microscopy. RESULTS: An optimized SNEDDS formulation consisting of Sefsol + vitamin E-Solutol HS 15-Transcutol P at proportions of 25:35:17.5 (w/w) was prepared and characterized. The globule size and polydispersity index of the optimized formulation was found to be 16.08 ± 0.02 nm and 0.124 ± 0.01, respectively. A significant (p < 0.05) increase in the percentage of drug release was achieved in the case of the optimized formulation as compared to rutin suspension. Pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability. The optimized formulation had significant in vitro and in vivo antioxidant activity. CONCLUSION: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing the oral bioavailability and efficacy of rutin, thus helping in ameliorating oxidative stress in neurodegenerative disorders like Parkinson's disease.


Assuntos
Estresse Oxidativo , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões , Humanos , Nanopartículas , Doença de Parkinson , Tamanho da Partícula , Rutina , Solubilidade , Tensoativos , Vitamina E
9.
Nanotechnology ; 27(2): 025102, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26629830

RESUMO

Paroxetine is a selective serotonin reuptake inhibitor (SSRI) and is used for the treatment of depression and anxiety problems, but suffers from the drawback of poor oral bioavailability (less than 50%) due to its extensive first pass metabolism. The objective of the present study was to develop a paroxetine loaded nanoemulsion (o/w type) for direct nose-to-brain delivery. Nanoemulsions were prepared by the spontaneous emulsification technique using Capmul MCM, Solutol HS 15 and propylene glycol as oil phase, surfactant and co-surfactant, respectively, for delivery of drug directly to the brain through the nasal route for better management of depression. Formulations were studied for droplet size, polydispersity index (PDI), percentage transmittance, refractive index, viscosity, zeta potential, surface morphology and in vitro permeation study. TEM images of optimized formulation showed spherical droplets with a mean diameter of 58.47 ± 3.02 nm, PDI of 0.339 ± 0.007 and zeta potential values of -33 mV. The formulation showed good results for transmittance (100.60 ± 0.577%), refractive index (1.412 ± 0.003) and viscosity (40.85 ± 6.40 cP). Permeation studies revealed a 2.57-fold enhancement in permeation as compared to the paroxetine suspension. Behavioural studies such as the forced swimming test and locomotor activity test were done on Wistar rats to study the antidepressant effect of the optimized formulation. Treatment of depressed rats with paroxetine nanoemulsion (administered intranasally) significantly improved the behavioural activities in comparison to paroxetine suspension (orally administered). Biochemical estimation results revealed that the prepared nanoemulsion was effective in enhancing the depressed levels of glutathione and decreasing the elevated levels of TBARS.


Assuntos
Antidepressivos de Segunda Geração/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Paroxetina/administração & dosagem , Administração Intranasal , Animais , Antidepressivos de Segunda Geração/farmacocinética , Química Farmacêutica/métodos , Modelos Animais de Doenças , Emulsões , Feminino , Masculino , Paroxetina/farmacologia , Tamanho da Partícula , Ratos , Ratos Wistar , Suínos
10.
Drug Dev Ind Pharm ; 42(2): 209-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26016780

RESUMO

The present work was aimed at developing an optimized oral nanostructured lipid carrier (NLC) formulation of poorly soluble atorvastatin Ca (AT Ca) and assessing its in vitro release, oral bioavailability and pharmacodynamic activity. In this study, chlorogenic acid, a novel excipient having synergistic cholesterol lowering activity was utilized and explored in NLC formulation development. The drug-loaded NLC formulations were prepared using a high pressure homogenization technique and optimized by the Box-Behnken statistical design using the Design-Expert software. The optimized NLC formulation was composed of oleic acid and stearic acid as lipid phase (0.9% w/v), poloxamer 188 as surfactant (1% w/v) and chlorogenic acid (0.05% w/v). The mean particle size, polydispersity index (PDI) and % drug entrapment efficiency of optimized NLC were 203.56 ± 8.57 nm, 0.27 ± 0.028 and 83.66 ± 5.69, respectively. In vitro release studies showed that the release of drug from optimized NLC formulations were markedly enhanced as compared to solid lipid nanoparticles (SLN) and drug suspension. The plasma concentration time profile of AT Ca in rats showed 3.08- and 4.89-fold increase in relative bioavailability of developed NLC with respect to marketed preparation (ATORVA® tablet) and drug suspension, respectively. Pharmacodynamic study suggested highly significant (**p < 0.01) reduction in the cholesterol and triglyceride values by NLC in comparison with ATORVA® tablet. Therefore, the results of in vivo studies demonstrated promising prospects for successful oral delivery of AT Ca by means of its chlorogenic acid integrated NLC.


Assuntos
Atorvastatina/administração & dosagem , Ácido Clorogênico/química , Lipídeos/química , Nanoestruturas , Administração Oral , Animais , Atorvastatina/química , Atorvastatina/farmacocinética , Disponibilidade Biológica , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Excipientes/química , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade
11.
Drug Dev Ind Pharm ; 41(12): 1922-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26057769

RESUMO

CONTEXT: Brain disorders remain the world's leading cause of disability, and account for more hospitalizations and prolonged care than almost all other diseases combined. The majority of drugs, proteins and peptides do not readily permeate into brain due to the presence of the blood-brain barrier (BBB), thus impeding treatment of these conditions. OBJECTIVE: Attention has turned to developing novel and effective delivery systems to provide good bioavailability in the brain. METHODS: Intranasal administration is a non-invasive method of drug delivery that may bypass the BBB, allowing therapeutic substances direct access to the brain. However, intranasal administration produces quite low drug concentrations in the brain due limited nasal mucosal permeability and the harsh nasal cavity environment. Pre-clinical studies using encapsulation of drugs in nanoparticulate systems improved the nose to brain targeting and bioavailability in brain. However, the toxic effects of nanoparticles on brain function are unknown. RESULT AND CONCLUSION: This review highlights the understanding of several brain diseases and the important pathophysiological mechanisms involved. The review discusses the role of nanotherapeutics in treating brain disorders via nose to brain delivery, the mechanisms of drug absorption across nasal mucosa to the brain, strategies to overcome the blood brain barrier, nanoformulation strategies for enhanced brain targeting via nasal route and neurotoxicity issues of nanoparticles.


Assuntos
Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Mucosa Nasal/metabolismo , Administração Intranasal , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Mucosa Nasal/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
12.
Drug Dev Ind Pharm ; 41(10): 1674-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25496439

RESUMO

CONTEXT: Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra. OBJECTIVE: The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson's drug ropinirole (RH) to the brain using polymeric nanoparticles. MATERIALS AND METHODS: Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration. RESULTS AND DISCUSSION: The RH-CSNPs showed sustained release profiles for up to 18 h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210 ± 0.52), followed by kidneys (6.862 ± 0.62), intestine (4.862 ± 0.45), and lungs (4.640 ± 0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251 ± 0.09 and 0.386 ± 0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5 h are indicative of direct nose to brain transport, bypassing the blood-brain barrier (BBB). CONCLUSION: The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.


Assuntos
Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacocinética , Quitosana/química , Indóis/administração & dosagem , Indóis/farmacocinética , Nanopartículas/química , Adesividade , Administração Intranasal , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Masculino , Doença de Parkinson/tratamento farmacológico , Tamanho da Partícula , Cintilografia , Ratos , Propriedades de Superfície , Suínos , Tecnologia Farmacêutica/métodos
13.
Nanotechnology ; 25(48): 485102, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25392203

RESUMO

Resveratrol, a potent natural antioxidant, possesses a wide range of pharmacological activities, but its oral bioavailability is very low due to its extensive hepatic and presystemic metabolism. The aim of the present study was to formulate a kinetically stable nanoemulsion (o/w) using vitamin E:sefsol (1:1) as the oil phase, Tween 80 as the surfactant and Transcutol P as the co-surfactant for the better management of Parkinson's disease. The nanoemulsion was prepared by a spontaneous emulsification method, followed by high-pressure homogenization. Ternary phase diagrams were constructed to locate the area of nanoemulsion. The prepared formulations were studied for globule size, zeta potential, refractive index, viscosity, surface morphology and in vitro and ex vivo release. The homogenized formulation, which contained 150 mg ml(-1) of resveratrol, showed spherical globules with an average globule diameter of 102 ± 1.46 nm, a least poly dispersity index of 0.158 ± 0.02 and optimal zeta potential values of -35 ± 0.02. The cumulative percentage drug release for the pre-homogenized resveratrol suspension, pre-homogenized nanoemulsion and post-homogenized nanoemulsion were 24.18 ± 2.30%, 54.32 ± 0.95% and 88.57 ± 1.92%, respectively, after 24 h. The ex vivo release also showed the cumulative percentage drug release of 85.48 ± 1.34% at 24 h. The antioxidant activity determined by using a DPPH assay showed high scavenging efficiency for the optimized formulation. Pharmacokinetic studies showed the higher concentration of the drug in the brain (brain/blood ratio: 2.86 ± 0.70) following intranasal administration of the optimized nanoemulsion. Histopathological studies showed decreased degenerative changes in the resveratrol nanoemulsion administered groups. The levels of GSH and SOD were significantly higher, and the level of MDA was significantly lower in the resveratrol nanoemulsion treated group.


Assuntos
Encéfalo/efeitos dos fármacos , Emulsões/farmacologia , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Estilbenos/farmacologia , Vitamina E/farmacologia , Animais , Antioxidantes/farmacologia , Disponibilidade Biológica , Química Farmacêutica , Feminino , Masculino , Tamanho da Partícula , Polissorbatos/farmacologia , Ratos , Ratos Wistar , Resveratrol , Solubilidade , Suínos , Viscosidade
14.
Drug Dev Ind Pharm ; 40(2): 278-87, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23369094

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is a progressive neurodegenerative disorder manifested by cognitive, memory deterioration and variety of neuropsychiatric symptoms. Donepezil is a reversible cholinesterase inhibitor used for the treatment of AD. The purpose of this work is to prepare a nanoparticulate drug delivery system of donepezil using poly(lactic-co-glycolic acid) (PLGA) for sustained release and efficient brain targeting. MATERIALS AND METHODS: PLGA nanoparticles (NPs) were prepared by the solvent emulsification diffusion-evaporation technique and characterized for particle size, particle-size distribution, zeta potential, entrapment efficiency, drug loading and interaction studies and in vivo studies using gamma scintigraphy techniques. RESULTS AND DISCUSSION: The size of drug-loaded NPs (drug polymer ratio 1:1) was found to be 89.67 ± 6.43 nm. The TEM and SEM images of the formulation suggested that particle size was within 20-100 nm and spherical in shape, smooth morphology and coating of Tween-80 on the NPs was clearly observed. The release behavior of donepezil exhibited a biphasic pattern characterized by an initial burst release followed by a slower and continuous sustained release. The biodistribution studies of donepezil-loaded PLGA NPs and drug solution via intravenous route revealed higher percentage of radioactivity per gram in the brain for the nanoparticulate formulation as compared with the drug solution (p < 0.05). CONCLUSION: The high concentrations of donepezil uptake in brain due to coated NPs may help in a significant improvement for treating AD. But further, more extensive clinical studies are needed to check and confirm the efficacy of the prepared drug delivery system.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Indanos/farmacocinética , Ácido Láctico/farmacocinética , Nanopartículas/metabolismo , Piperidinas/farmacocinética , Ácido Poliglicólico/farmacocinética , Animais , Encéfalo/metabolismo , Donepezila , Indanos/administração & dosagem , Ácido Láctico/administração & dosagem , Nanopartículas/administração & dosagem , Tamanho da Partícula , Piperidinas/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
15.
Assay Drug Dev Technol ; 22(2): 73-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38193798

RESUMO

Glioblastoma, commonly known as glioblastoma multiforme (GBM), is one of the deadliest and most invasive types of brain cancer. Two factors account for the majority of the treatment limitations for GBM. First, the presence of the blood-brain barrier (BBB) renders malignancy treatment ineffective, leading to recurrence without full recovery. Second, several adverse effects are associated with the drugs used in conventional GBM treatment. Recent studies have developed nanocarrier systems, such as liposomes, polymeric micelles, dendrimers, nanosuspensions, nanoemulsions, nanostructured lipid carriers, solid lipid nanocarriers, metal particles, and silica nanoparticles, which allow drug-loaded formulations to penetrate the BBB more effectively. This has opened up new possibilities for overcoming therapy issues. Extensive and methodical searches of databases such as PubMed, Science Direct, Google Scholar, and others were conducted to gather relevant literature for this work, using precise keyword combinations such as "GBM," "brain tumor," and "nanocarriers." This review provides deep insights into the administration of drugs using nanocarriers for the management of GBM and explores new advancements in nanotechnology. It also highlights how scientific developments can be explained in connection with hopeful findings about the potential of nanocarriers for the future successful management of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Portadores de Fármacos , Lipossomos , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Lipídeos
16.
J Drug Target ; : 1-19, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38748872

RESUMO

Breast cancer presents a significant global health challenge, ranking highest incidence rate among all types of cancers. Functionalised nanocarriers offer a promising solution for precise drug delivery by actively targeting cancer cells through specific receptors, notably folate receptors. By overcoming the limitations of passive targeting in conventional therapies, this approach holds the potential for enhanced treatment efficacy through combination therapy. Encouraging outcomes from studies like in vitro and in vivo, underscore the promise of this innovative approach. This review explores the therapeutic potential of FA (Folic acid) functionalised nanocarriers tailored for breast cancer management, discussing various chemical modification techniques for functionalization. It examines FA-conjugated nanocarriers containing chemotherapeutics to enhance treatment efficacy and addresses the pharmacokinetic aspect of these functionalised nanocarriers. Additionally, the review integrates active targeting via folic acid with theranostics, photothermal therapy, and photodynamic therapy, offering a comprehensive management strategy. Emphasising rigorous experimental validation for practical utility, the review underscores the need to bridge laboratory research to clinical application. While these functionalised nanocarriers show promise, their credibility and applicability in real-world settings necessitate thorough validation for effective clinical use.

17.
Expert Opin Drug Deliv ; 21(3): 423-435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481172

RESUMO

INTRODUCTION: Parkinson's disease (PD) is a neurological condition defined by a substantial reduction in dopamine-containing cells in the substantia nigra. Levodopa (L-Dopa) is considered the gold standard in treatment. Recent research has clearly shown that resistance to existing therapies can develop. Moreover, the involvement of multiple pathways in the nigrostriatal dopaminergic neuronal loss suggests that modifying the treatment strategy could effectively reduce this degeneration. AREAS COVERED: This review summarizes the key concerns with treating PD patients and the combinations, aimed at effectively managing PD. Part I focuses on the clinical diagnosis at every stage of the disease as well as the pharmacological treatment strategies that are applied throughout its course. It methodically elucidates the potency of multifactorial interventions in attenuating the disease trajectory, substantiating the rationale for co-administration of dual or multiple therapeutic agents. Significant emphasis is laid on evidence-based pharmacological combinations for PD management. EXPERT OPINION: By utilizing multiple drugs in a combination fashion, this approach can leverage the additive or synergistic effects of these agents, amplify the spectrum of treatment, and curtail the risk of side effects by reducing the dose of each drug, demonstrating significantly greater efficacy.


Assuntos
Antiparkinsonianos , Quimioterapia Combinada , Levodopa , Doença de Parkinson , Doença de Parkinson/tratamento farmacológico , Humanos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/farmacologia , Levodopa/administração & dosagem , Levodopa/uso terapêutico , Animais , Portadores de Fármacos/química , Nanopartículas , Sinergismo Farmacológico
18.
Expert Opin Drug Deliv ; 21(3): 437-456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507231

RESUMO

INTRODUCTION: The current treatment modalities available for Parkinson's disease (PD) prove inadequate due to the inherent constraints in effectively transporting bioactive compounds across the blood-brain barrier. The utilization of synergistic combinations of multiple drugs in conjunction with advanced nanotechnology, emerges as a promising avenue for the treatment of PD, offering potential breakthroughs in treatment efficacy, targeted therapy, and personalized medicine. AREAS COVERED: This review provides a comprehensive analysis of the efficacy of multifactorial interventions for PD, simultaneously addressing the primary challenges of conventional therapies and highlighting how advanced technologies can help overcome these limitations. Part II focuses on the effectiveness of nanotechnology for improving pharmacokinetics of conventional therapies, through the synergistic use of dual or multiple therapeutic agents into a single nanoformulation. Significant emphasis is laid on the advancements toward innovative integrations, such as CRISPR/Cas9 with neuroprotective agents and stem cells, all effectively synergized with nanocarriers. EXPERT OPINION: By using drug combinations, we can leverage their combined effects to enhance treatment efficacy and mitigate side effects through lower dosages. This article is meant to give nanocarrier-mediated co-delivery of drugs and the strategic incorporation of CRISPR/Cas9, either as an independent intervention or synergized with a neuroprotective agent.


Assuntos
Antiparkinsonianos , Portadores de Fármacos , Nanopartículas , Nanotecnologia , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/farmacologia , Portadores de Fármacos/química , Animais , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacocinética , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Medicina de Precisão , Quimioterapia Combinada , Sistemas CRISPR-Cas , Combinação de Medicamentos , Terapia Combinada , Desenvolvimento de Medicamentos , Desenho de Fármacos
19.
Discov Nano ; 19(1): 5, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175319

RESUMO

Etravirine (ERVN) is a potential NNRTI (non-nucleoside reverse transcriptase inhibitor) in treating HIV infection. It possesses extremely low oral bioavailability. The present research aims to optimize the formulation and characterization of TPGS-enriched ERVN-loaded lipid-based nanocarriers (NLCs) for HIV-infected patients. The formulation, ERVN-TPGS-NLCs, was optimized by central composite rotational design using a modified-solvent emulsification process. Various characterization parameters of NLCs were evaluated, including globule size of 121.56 ± 2.174 nm, PDI of 0.172 ± 0.042, the zeta potential of - 7.32 ± 0.021 mV, %EE of 94.42 ± 8.65% of ERVN and %DL was 8.94 ± 0.759% of ERVN and spherical shape was revealed by TEM. PXRD was also performed to identify the crystallinity of the sample. In-vitro drug release showed % a cumulative drug release of 83.72 ± 8.35% at pH 1.2 and 90.61 ± 9.11% at pH 6.8, respectively, whereas the % cumulative drug release from drug suspension (ERVN-S) was found to be 21.13 ± 2.01% at pH 1.2 and 24.84 ± 2.51 at pH 6.8 at the end of 48 h. Further, the intestinal permeation study and confocal microscope showed approximately three-fold and two-fold increased permeation in ERVN-TPGS-NLCs and ERVN-NLCs across the gut sac compared to ERVN-S. Hemolysis compatibility and lipolysis studies were performed to predict the in-vivo fate of the formulation. The pharmacokinetic study revealed a 3.13-fold increment in the relative bioavailability, which agrees with the ex-vivo studies, and lymphatic uptake was validated by using cycloheximide along with designed formulation, which showed the impact of lymphatic uptake in AUC. This study ensures that ERVN-TPGS-NLCs take lymphatic uptake to minimize the first-pass metabolism followed by improved oral bioavailability of ERVN. Thus, the enhanced bioavailability of ERVN can reduce the high dose of ERVN to minimize the adverse effects related to dose-related burden.

20.
Saudi Pharm J ; 21(1): 93-102, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23960823

RESUMO

Stability-indicating high-performance thin-layer chromatographic (HPTLC) method for the analysis of ropinirole HCl was developed and validated as per the ICH guidelines. The method employed the mobile phase and toluene-ethyl acetate-6 M ammonia solution (5:6:0.5, v/v/v) was optimized with the help of a design expert. Densitometric analysis of ropinirole HCl was carried out in the absorbance mode at 250 and 254 nm. Compact spots for ropinirole HCl were found at R f value of 0.58 ± 0.02. The linear regression analysis data for the calibration plots showed R (2) = 0.9989 ± 0.0053 with a concentration range of 100-3000 ng spot(-1). The method was validated for precision, accuracy, ruggedness, robustness, specificity, recovery, limit of detection (LOD) and limit of quantitation (LOQ). The LOD and LOQ were 12.95 and 39.25 ng spot(-1) respectively. Drug was subjected to acidic, alkaline, oxidative, dry heat, wet heat and photo degradation stress. All the peaks of degradation products were well resolved from the standard drug peak with significant difference of R f. The acidic and alkaline stress degradation kinetics of ropinirole, were found to be in first order, showing high stability (t 1/2, 146.37 h(-1); t 0.9, 39.11 h(-1)) in the acidic medium and low stability (t 1/2, 97.67 h(-1); t 0.9, 14.87 h(-1)) in the alkaline environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa