RESUMO
Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Oxibato de Sódio/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ácidos Carboxílicos/farmacologia , Cristalografia por Raios X , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neuroproteção , Ligação Proteica , Domínios Proteicos , Transdução de SinaisRESUMO
Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nM) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation.
Assuntos
Ceramidase Ácida/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ceramidas/química , Regulação para Baixo , Inibidores Enzimáticos/química , Fibroblastos/metabolismo , Células HCT116 , Células Hep G2 , Humanos , Concentração Inibidora 50 , Queratinócitos/metabolismo , Lipídeos/química , Lisofosfolipídeos/metabolismo , Células MCF-7 , Melanócitos/citologia , Melanócitos/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Oxirredutases/metabolismo , RNA Interferente Pequeno/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Uracila/análogos & derivados , Uracila/químicaRESUMO
PSD-95 inhibitors have been shown to be neuroprotective in stroke, but have only to a very limited extent been evaluated in the treatment of traumatic brain injury (TBI) that has pathophysiological mechanisms in common with stroke. The aims of the current study were to assess the effects of a novel dimeric inhibitor of PSD-95, UCCB01-147, on histopathology and long-term cognitive outcome after controlled cortical impact (CCI) in rats. As excitotoxic cell death is thought to be a prominent part of the pathophysiology of TBI, we also investigated the neuroprotective effects of UCCB01-147 and related compounds on NMDA-induced cell death in cultured cortical neurons. Anesthetized rats were given a CCI or sham injury, and were randomized to receive an injection of either UCCB01-147 (10 mg/kg), the non-competitive NMDAR-receptor antagonist MK-801 (1 mg/kg) or saline immediately after injury. At 2 and 4 weeks post-trauma, spatial learning and memory were assessed in a water maze, and at 3 months, brains were removed for estimation of lesion volumes. Overall, neither treatment with UCCB01-147 nor MK-801 resulted in significant improvements of cognition and histopathology after CCI. Although MK-801 provided robust neuroprotection against NMDA-induced toxicity in cultured cortical neurons, UCCB01-147 failed to reduce cell death and became neurotoxic at high doses. The data suggest potential differential effects of PSD-95 inhibition in stroke and TBI that should be investigated further in future studies taking important experimental factors such as timing of treatment, dosage, and anesthesia into consideration.
Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Cognição/fisiologia , Modelos Animais de Doenças , Masculino , Memória/efeitos dos fármacos , Atividade Motora/fisiologia , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacosRESUMO
Therapeutic effects of PSD-95 inhibition have been demonstrated in numerous studies of stroke; however only few studies have assessed the effects of PSD-95 inhibitors in traumatic brain injury (TBI). As the pathophysiology of TBI partially overlaps with that of stroke, PSD-95 inhibition may also be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were investigated in order to assess uptake of the drug into the central nervous system of rats. After a controlled cortical impact rats were randomized to receive a single injection of either saline or two different doses of UCCB01-144 (10 or 20 mg/kg IV) immediately after injury. Spatial learning and memory were assessed in a water maze at 2 weeks post-trauma, and at 4 weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects of PSD-95 inhibitors in TBI are discussed.
Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/antagonistas & inibidores , Memória/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacosRESUMO
PSD-95 is a scaffolding protein of the MAGUK protein family, and engages in several vital protein-protein interactions in the brain with its PDZ domains. It has been suggested that PSD-95 is composed of two supramodules, one of which is the PDZ1-2 tandem domain. Here we have developed rigidified high-affinity dimeric ligands that target the PDZ1-2 supramodule, and established the biophysical parameters of the dynamic PDZ1-2/ligand interactions. By employing ITC, protein NMR, and stopped-flow kinetics this study provides a detailed insight into the overall conformational energetics of the interaction between dimeric ligands and tandem PDZ domains. Our findings expand our understanding of the dynamics of PSD-95 with potential relevance to its biological role in interacting with multivalent receptor complexes and development of novel drugs.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Bibliotecas de Moléculas Pequenas/química , Triazóis/química , Sítios de Ligação , Dimerização , Proteína 4 Homóloga a Disks-Large , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Ligantes , Proteínas de Membrana/genética , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-D-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are lacking. Here we report the design and synthesis of a novel dimeric inhibitor, Tat-NPEG4(IETDV)(2) (Tat-N-dimer), which binds the tandem PDZ1-2 domain of PSD-95 with an unprecedented high affinity of 4.6 nM, and displays extensive protease-resistance as evaluated in vitro by stability-measurements in human blood plasma. X-ray crystallography, NMR, and small-angle X-ray scattering (SAXS) deduced a true bivalent interaction between dimeric inhibitor and PDZ1-2, and also provided a dynamic model of the conformational changes of PDZ1-2 induced by the dimeric inhibitor. A single intravenous injection of Tat-N-dimer (3 nmol/g) to mice subjected to focal cerebral ischemia reduces infarct volume with 40% and restores motor functions. Thus, Tat-N-dimer is a highly efficacious neuroprotective agent with therapeutic potential in stroke.
Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Animais , Sítios de Ligação , Barreira Hematoencefálica , Cristalografia por Raios X , Proteína 4 Homóloga a Disks-Large , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Guanilato Quinases/antagonistas & inibidores , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Terapia de Alvo Molecular , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/prevenção & controle , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Ressonância Magnética Nuclear Biomolecular , Domínios PDZ/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Equilíbrio Postural , Conformação Proteica , Transtornos de Sensação/etiologia , Transtornos de Sensação/prevenção & controleRESUMO
The ceramides are a family of bioactive lipid-derived messengers involved in the control of cellular senescence, inflammation, and apoptosis. Ceramide hydrolysis by acid ceramidase (AC) stops the biological activity of these substances and influences survival and function of normal and neoplastic cells. Because of its central role in the ceramide metabolism, AC may offer a novel molecular target in disorders with dysfunctional ceramide-mediated signaling. Here, a class of benzoxazolone carboxamides is identified as the first potent and systemically active inhibitors of AC. Prototype members of this class inhibit AC with low nanomolar potency by covalent binding to the catalytic cysteine. Their metabolic stability and high inâ vivo efficacy suggest that these compounds may be used as probes to investigate the roles of ceramide in health and disease, and that this scaffold may represent a promising starting point for the development of novel therapeutic agents.
Assuntos
Amidas/química , Benzoxazóis/química , Ceramidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologiaRESUMO
Inhibition of the protein-protein interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as an attractive approach for treating oxidative stress-related diseases. Here, we present a new series of noncovalent Keap1-Nrf2 inhibitors developed by a conformational restriction strategy of our fluorenone-based compounds previously identified by fragment-based drug discovery. The design was guided by X-ray cocrystal structures, and the subsequent optimization process aimed at improving affinity, cellular activity, and metabolic stability. From the noncyclic compound 7 (Ki = 2.9 µM), a new series of tetrahydroisoquinoline-based Keap1 inhibitors with up to 223-fold improvement in binding affinity (57, Ki = 13 nM), better metabolic stability, and enhanced cellular activity was obtained. In addition, the compounds showed selectivity for the Keap1 Kelch domain across a panel of 15 homologous proteins. We thereby demonstrate the utility of cyclic rigidification in the design of potent and more drug-like Keap1-Nrf2 inhibitors.
RESUMO
Human genome-wide association studies (GWAS) suggest a functional role for central glutamate receptor signaling and plasticity in body weight regulation. Here, we use UK Biobank GWAS summary statistics of body mass index (BMI) and body fat percentage (BF%) to identify genes encoding proteins known to interact with postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Loci in/near discs large homolog 4 (DLG4) and protein interacting with C kinase 1 (PICK1) reached genome-wide significance (P < 5 × 10-8) for BF% and/or BMI. To further evaluate the functional role of postsynaptic density protein-95 (PSD-95; gene name: DLG4) and PICK1 in energy homeostasis, we used dimeric PSD-95/disc large/ZO-1 (PDZ) domain-targeting peptides of PSD-95 and PICK1 to demonstrate that pharmacological inhibition of PSD-95 and PICK1 induces prolonged weight-lowering effects in obese mice. Collectively, these data demonstrate that the glutamate receptor scaffolding proteins, PICK1 and PSD-95, are genetically linked to obesity and that pharmacological targeting of their PDZ domains represents a promising therapeutic avenue for sustained weight loss.
Assuntos
Estudo de Associação Genômica Ampla , Receptores de AMPA , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genéticaRESUMO
PSD-93 (chapsyn-110, DLG2) is a member of the family of membrane-associated guanylate kinase (MAGUK) proteins. The MAGUK proteins are involved in receptor localization and signalling pathways. The best characterized MAGUK protein, PSD-95, is known to be involved in NMDA receptor signalling via its PDZ domains. The PDZ domains of PSD-95 and PSD-93 are structurally very similar, but relatively little is known about the function of PSD-93. PSD-93 has been suggested to interact with GluD2 from the family of ionotropic glutamate receptors. Here, the interactions of four residues (GTSI) representing the extreme C-terminus of GluD2 with PSD-93 PDZ1 have been investigated in the crystalline phase. Two different binding modes of these residues were observed, suggesting that the peptide is not tightly bound to PSD-93 PDZ1. In accordance, the two N-terminal PSD-93 PDZ domains show no appreciable binding affinity for a GluD2-derived C-terminal octapeptide, whereas micromolar affinity was observed for a GluN2B-derived C-terminal octapeptide. This indicates that if present, the interactions between GluD2 and PSD-93 involve more than the extreme terminus of the receptor. In contrast, the tumour-suppressor protein SCRIB PDZ3 shows low micromolar affinity towards the GluD2-derived octapeptide, which is in agreement with previous findings using high-throughput assays.
Assuntos
Guanilato Quinases/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas Supressoras de Tumor/metabolismo , Comunicação Celular/fisiologia , Cristalização , Cristalografia por Raios X , Polarização de Fluorescência , Guanilato Quinases/biossíntese , Guanilato Quinases/química , Humanos , Microscopia de Fluorescência por Excitação Multifotônica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/químicaRESUMO
Proteins containing PSD-95/Discs-large/ZO-1 homology (PDZ) domains play key roles in the assembly and regulation of cellular signaling pathways and represent putative targets for new pharmacotherapeutics. Here we describe the first small-molecule inhibitor (FSC231) of the PDZ domain in protein interacting with C kinase 1 (PICK1) identified by a screening of approximately 44,000 compounds in a fluorescent polarization assay. The inhibitor bound the PICK1 PDZ domain with an affinity similar to that observed for endogenous peptide ligands (K(i) approximately 10.1 microM). Mutational analysis, together with computational docking of the compound in simulations starting from the PDZ domain structure, identified the binding mode of FSC231. The specificity of FSC231 for the PICK1 PDZ domain was supported by the lack of binding to PDZ domains of postsynaptic density protein 95 (PSD-95) and glutamate receptor interacting protein 1 (GRIP1). Pretreatment of cultured hippocampal neurons with FSC231 inhibited coimmunopreciptation of the AMPA receptor GluR2 subunit with PICK1. In agreement with inhibiting the role of PICK1 in GluR2 trafficking, FSC231 accelerated recycling of pHluorin-tagged GluR2 in hippocampal neurons after internalization in response to NMDA receptor activation. FSC231 blocked the expression of both long-term depression and long-term potentiation in hippocampal CA1 neurons from acute slices, consistent with inhibition of the bidirectional function of PICK1 in synaptic plasticity. Given the proposed role of the PICK1/AMPA receptor interaction in neuropathic pain, excitotoxicity, and cocaine addiction, FSC231 might serve as a lead in the future development of new therapeutics against these conditions.
Assuntos
Carbamatos/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Cinamatos/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Domínios PDZ , Animais , Sítios de Ligação , Células COS , Carbamatos/química , Proteínas de Transporte/química , Proteínas de Transporte/genética , Chlorocebus aethiops , Cinamatos/química , Proteínas do Citoesqueleto , Hipocampo/citologia , Humanos , Modelos Moleculares , Estrutura Molecular , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Kelch-like ECH-associated protein 1 (Keap1) is a drug target for diseases involving oxidative stress and inflammation. There are three covalent Keap1-binding drugs on the market, but noncovalent compounds that inhibit the interaction between Keap1 and nuclear factor erythroid 2-related factor 2 (Nrf2) represent an attractive alternative. Both compound types prevent degradation of Nrf2, leading to the expression of antioxidant and antiinflammatory proteins. However, their off-target profiles differ as do their exact pharmacodynamic effects. Here, we discuss the opportunities and challenges of targeting Keap1 with covalent versus noncovalent inhibitors. We then provide a comprehensive overview of current noncovalent Keap1-Nrf2 inhibitors, with a focus on their pharmacological effects, to examine the therapeutic potential for this compound class.
Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Ligação Proteica , Antioxidantes/farmacologiaRESUMO
Tumor necrosis factor (TNF) is a pleiotropic cytokine with a major role in immune system homeostasis and is involved in many inflammatory and autoimmune diseases, such as rheumatoid arthritis (RA), psoriasis, Alzheimer's disease (AD), and multiple sclerosis (MS). Thus, TNF and its receptors, TNFR1 and TNFR2, are relevant pharmacological targets. Biologics have been developed to block TNF-dependent signaling cascades, but they display serious side effects, and their pharmacological effectiveness decreases over time because of their immunogenicity. In this review, we present recent discoveries in small molecules targeting TNF and its receptors and discuss alternative strategies for modulating TNF signaling.
Assuntos
Artrite Reumatoide , Doenças Autoimunes , Esclerose Múltipla , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Citocinas , Doenças Autoimunes/tratamento farmacológico , Fator de Necrose Tumoral alfaRESUMO
Hit generation is a crucial step in drug discovery that will determine the speed and chance of success of identifying drug candidates. Many strategies are now available to identify chemical starting points, or hits, and each biological target warrants a tailored approach. In this set of best practices, we detail the essential approaches for target centric hit generation and the opportunities and challenges they come with. We then provide guidance on how to validate hits to ensure medicinal chemistry is only performed on compounds and scaffolds that engage the target of interest and have the desired mode of action. Finally, we discuss the design of integrated hit generation strategies that combine several approaches to maximize the chance of identifying high quality starting points to ensure a successful drug discovery campaign.
Assuntos
Química Farmacêutica , Descoberta de Drogas , BiologiaRESUMO
Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) is an enzymatic complex whose function is the regulated generation of reactive oxygen species (ROS). NOX2 activity is central to redox signaling events and antibacterial response, but excessive ROS production by NOX2 leads to oxidative stress and inflammation in a range of diseases. The protein-protein interaction between the NOX2 subunits p47phox and p22phox is essential for NOX2 activation, thus p47phox is a potential drug target. Previously, we identified 2-aminoquinoline as a fragment hit toward p47phoxSH3A-B and converted it to a bivalent small-molecule p47phox-p22phox inhibitor (Ki = 20 µM). Here, we systematically optimized the bivalent compounds by exploring linker types and positioning as well as substituents on the 2-aminoquinoline part and characterized the bivalent binding mode with biophysical methods. We identified several compounds with submicromolar binding affinities and cellular activity and thereby demonstrated that p47phox can be targeted by potent small molecules.
Assuntos
NADPH Oxidases , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , AminoquinolinasRESUMO
Quality of life is often reduced in patients with sleep-wake disorders. Insomnia is commonly treated with benzodiazepines, despite their well-known side effects. Pellotine (1), a Lophophora alkaloid, has been reported to have short-acting sleep-inducing properties in humans. In this study, we set out to evaluate various in vitro and in vivo properties of 1. We demonstrate that 1 undergoes slow metabolism; e.g. in mouse liver microsomes 65% remained, and in human liver microsomes virtually no metabolism was observed after 4 h. In mouse liver microsomes, two phase I metabolites were identified: 7-desmethylpellotine and pellotine-N-oxide. In mice, the two diastereomers of pellotine-O-glucuronide were additionally identified as phase II metabolites. Furthermore, we demonstrated by DESI-MSI that 1 readily enters the central nervous system of rodents. Furthermore, radioligand-displacement assays showed that 1 is selective for the serotonergic system and in particular the serotonin (5-HT)1D, 5-HT6, and 5-HT7 receptors, where it binds with affinities in the nanomolar range (117, 170, and 394 nM, respectively). Additionally, 1 was functionally characterized at 5-HT6 and 5-HT7, where it was found to be an agonist at the former (EC50 = 94 nM, Emax = 32%) and an inverse agonist at the latter (EC50 = 291 nM, Emax = -98.6). Finally, we demonstrated that 1 dose-dependently decreases locomotion in mice, inhibits REM sleep, and promotes sleep fragmentation. Thus, we suggest that pellotine itself, and not an active metabolite, is responsible for the hypnotic effects and that these effects are possibly mediated through modulation of serotonergic receptors.
RESUMO
The E6 protein of human papillomavirus (HPV) exhibits complex interaction patterns with several host proteins, and their roles in HPV-mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor suppressor protein synapse-associated protein 97 (SAP97). All of the potential binding sites in SAP97 bind E6 with micromolar affinity. The dissociation rate constants govern the different affinities of HPV16 and HPV18 E6 for SAP97. Unexpectedly, binding is not mutually exclusive, and all three PDZ domains can simultaneously bind E6. Intriguingly, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues distal to the canonical binding pocket in the PDZ(2) domain exhibited noncanonical interactions with the E6 protein. This is consistent with a larger proportion of the protein surface defining binding specificity, as compared with that reported previously.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sítios de Ligação , Proteína 1 Homóloga a Discs-Large , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Domínios PDZ , Ligação Proteica , Conformação ProteicaRESUMO
Based on the conformationally constrained D-Trp-Phe-D-Trp (wFw) core of the prototype inverse agonist [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]substance P, a series of novel, small, peptide-mimetic agonists for the ghrelin receptor were generated. By using various simple, ring-constrained spacers connecting the D-Trp-Phe-D-Trp motif with the important C-terminal carboxyamide group, 40 nm agonism potency was obtained and also in one case (wFw-Isn-NH(2), where Isn is isonipecotic acid) ~80% efficacy. However, in contrast to all previously reported ghrelin receptor agonists, the piperidine-constrained wFw-Isn-NH(2) was found to be a functionally biased agonist. Thus, wFw-Isn-NH(2) mediated potent and efficacious signaling through the Gα(q) and ERK1/2 signaling pathways, but in contrast to all previous ghrelin receptor agonists it did not signal through the serum response element, conceivably the Gα(12/13) pathway. The recognition pattern of wFw-Isn-NH(2) with the ghrelin receptor also differed significantly from that of all previously characterized unbiased agonists. Most importantly, wFw-Isn-NH(2) was not dependent on GluIII:09 (Glu3.33), which otherwise is an obligatory TM III anchor point residue for ghrelin agonists. Molecular modeling and docking experiments indicated that wFw-Isn-NH(2) binds in the classical agonist binding site between the extracellular segments of TMs III, VI, and VII, interacting closely with the aromatic cluster between TMs VI and VII, but that it does so in an opposite orientation as compared with, for example, the wFw peptide agonists. It is concluded that the novel peptide-mimetic ligand wFw-Isn-NH(2) is a biased ghrelin receptor agonist and that the selective signaling pattern presumably is due to its unique receptor recognition pattern lacking interaction with key residues especially in TM III.
Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptidomiméticos/farmacologia , Receptores de Grelina/agonistas , Receptores de Grelina/metabolismo , Substância P , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Peptidomiméticos/síntese química , Peptidomiméticos/química , Receptores de Grelina/genéticaRESUMO
Intrinsically disordered proteins are very common and mediate numerous protein-protein and protein-DNA interactions. While it is clear that these interactions are instrumental for the life of the mammalian cell, there is a paucity of data regarding their molecular binding mechanisms. Here we have used short peptides as a model system for intrinsically disordered proteins. Linear free energy relationships based on rate and equilibrium constants for the binding of these peptides to ordered target proteins, PDZ domains, demonstrate that native side-chain interactions form mainly after the rate-limiting barrier for binding and in a cooperative fashion. This finding suggests that these disordered peptides first form a weak encounter complex with non-native interactions. The data do not support the recent notion that the affinities of intrinsically disordered proteins toward their targets are generally governed by their association rate constants. Instead, we observed the opposite for peptide-PDZ interactions, namely, that changes in K(d) correlate with changes in k(off).
Assuntos
Domínios PDZ , Peptídeos/química , Peptídeos/metabolismo , Ligantes , Modelos Lineares , Modelos Moleculares , Ligação Proteica , TermodinâmicaRESUMO
The nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) multi-subunit complex is a highly abundant and central source of reactive oxygen species. NOX2 is a key enzyme of the innate immune system involved in antibacterial response, but excessive NOX2 activity is involved in oxidative stress and inflammation in many diseases. Inhibition of NOX2 has great potential as a therapeutic strategy. An intriguing pharmacological approach for inhibiting NOX2 is to target the p47phox subunit and thereby block the protein-protein interaction with p22phox, whereby assembling and activation of NOX2 is prevented. However, the shallow binding pocket of p47phox makes it difficult to develop drug-like p47phox/p22phox inhibitors. Recently, the small molecule LMH001 was reported to inhibit the p47phox/p22phox interaction, reduce endothelial NOX2 activity, and protect mice from angiotensin II-induced vascular oxidative stress. These noteworthy results could have significant impact on the field of NOX2 pharmacology, as specific and efficient inhibitors are scarce. Here, we synthesized and tested LMH001 to have it available as a positive control. We established a robust synthetic route for providing LMH001, but subsequently we experienced that LMH001 is chemically unstable in aqueous buffer. In addition, neither LMH001 nor its breakdown products were able to inhibit the p47phox/p22phox interaction in a non-cellular fluorescence polarization assay. However, LHM001 was a weak inhibitor of NOX2 in a functional cell assay, but with same low potency as one of its breakdown products. These findings question the activity and suggested mechanism of LMH001 and constitute important information for other researchers interested in chemical probes for studying NOX2 biology.