Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115024

RESUMO

Pea is a grain legume crop with a high potential to accelerate the food transition due to its high seed protein content and relatively well-balanced amino acid composition. The critical role of external sulfur (S) supply in determining seed yield and seed quality in pea makes it essential to understand the impact of whole plant S management on the trade-off between these two traits. Here, we investigated the physiological relevance of vacuolar sulfate remobilization by targeting PsSULTR4, the only pea sulfate transporter showing substantial similarity to the vacuolar sulfate exporter AtSULTR4;1. Five mutations in PsSULTR4 were identified by TILLING (Targeting Induced Local Lesions IN Genomes), two of which, a loss of function (W78*) and a missense (E568K), significantly decreased seed yield under S deprivation. We demonstrate that PsSULTR4 triggers S distribution from source tissues, especially lower leaves, to reproductive organs to maintain seed yield under S deficiency. Under sufficient S supply, sultr4 seeds display lower levels of the S-rich storage protein PA1 at maturity. They also overaccumulate sulfate in the endosperm at the onset of seed filling. These findings uncover a role of PsSULTR4 in the remobilization of vacuolar sulfate during embryo development, allowing the efficient synthesis of S-rich proteins. Our study uncovers that PsSULTR4 functions (i) in source tissues to remobilize stored vacuolar sulfate for seed production under low S availability and (ii) in developing seeds well supplied with S to fine-tune sulfate remobilization from the endosperm as a critical control point for storage activities in the embryo.

2.
J Exp Bot ; 74(11): 3276-3285, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946623

RESUMO

Improving and stabilizing the quality of seed proteins are of growing interest in the current food and agroecological transitions. Sulfur is a key determinant of this quality since it is essential for the synthesis of sulfur-rich proteins in seeds. A lack of sulfur provokes drastic changes in seed protein composition, negatively impacting the nutritional and functional properties of proteins, and leading in some cases to diseases or health problems in humans. Sulfur also plays a crucial role in stress tolerance through the synthesis of antioxidant or protective molecules. In the context of climate change, questions arise regarding the trade-off between seed yield and seed quality with respect to sulfur availability and use by crops that represent important sources of proteins for human nutrition. Here, we review recent work obtained in legumes, cereals, as well as in Arabidopsis, that present major advances on: (i) the interaction between sulfur nutrition and environmental or nutritional stresses with regard to seed yield and protein composition; (ii) metabolic pathways that merit to be targeted to mitigate negative impacts of environmental stresses on seed protein quality; and (iii) the importance of sulfur homeostasis for the regulation of seed protein composition and its interplay with seed redox homeostasis.


Assuntos
Arabidopsis , Sementes , Humanos , Sementes/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Enxofre/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa