Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
NMR Biomed ; 37(6): e5113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38316107

RESUMO

31P MRSI allows for the non-invasive mapping of pH and magnesium ion content (Mg) in vivo, by translating the chemical shifts of inorganic phosphate and adenosine-5'-triphosphate (ATP) to pH and Mg via suitable calibration equations, such as the modified Henderson-Hasselbalch equation. However, the required constants in these calibration equations are typically only determined for physiological conditions, posing a particular challenge for their application to diseased tissue, where the biochemical conditions might change manyfold. In this article, we propose a multi-parametric look-up algorithm aiming at the condition-independent determination of pH and Mg by employing multiple quantifiable 31P spectral properties simultaneously. To generate entries for an initial look-up table, measurements from 114 model solutions prepared with varying chemical properties were made at 9.4 T. The number of look-up table entries was increased by inter- and extrapolation using a multi-dimensional function developed based on the Hill equation. The assignment of biochemical parameters, that is, pH and Mg, is realized using probability distributions incorporating specific measurement uncertainties on the quantified spectral parameters, allowing for an estimation of most plausible output values. As proof of concept, we applied a version of the look-up algorithm employing only the chemical shifts of γ- and ß-ATP for the determination of pH and Mg to in vivo 3D 31P MRSI data acquired at 7 T from (i) the lower leg muscles of healthy volunteers and (ii) the brains of patients with glioblastoma. The resulting volumetric maps showed plausible values for pH and Mg, partly revealing differences from maps generated using the conventional calibration equations.


Assuntos
Algoritmos , Magnésio , Magnésio/análise , Magnésio/química , Concentração de Íons de Hidrogênio , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Fósforo/química , Isótopos de Fósforo
2.
Magn Reson Med ; 90(4): 1569-1581, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37317562

RESUMO

PURPOSE: The purpose of this study was to compare the potential of asymmetry-based (APTwasym ), Lorentzian-fit-based (PeakAreaAPT and MTconst ), and relaxation-compensated (MTRRex APT and MTRRex MT) CEST contrasts of the amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) for early response assessment and prediction of progression-free survival (PFS) in patients with glioma. METHODS: Seventy-two study participants underwent CEST-MRI at 3T from July 2018 to December 2021 in a prospective clinical trial four to 6 wk after the completion of radiotherapy for diffuse glioma. Tumor segmentations were performed on T2w -FLAIR and contrast-enhanced T1w images. Therapy response assessment and determination of PFS were performed according to response assessment in neuro oncology (RANO) criteria using clinical follow-up data with a median observation time of 9.2 mo (range, 1.6-40.8) and compared to CEST MRI metrics. Statistical testing included receiver operating characteristic analyses, Mann-Whitney-U-test, Kaplan-Meier analyses, and logrank-test. RESULTS: MTconst (AUC = 0.79, p < 0.01) showed a stronger association with RANO response assessment compared to PeakAreaAPT (AUC = 0.71, p = 0.02) and MTRRex MT (AUC = 0.71, p = 0.02), and enabled differentiation of participants with pseudoprogression (n = 8) from those with true progression (AUC = 0.79, p = 0.02). Furthermore, MTconst (HR = 3.04, p = 0.01), PeakAreaAPT (HR = 0.39, p = 0.03), and APTwasym (HR = 2.63, p = 0.02) were associated with PFS. MTRRex APT was not associated with any outcome. CONCLUSION: MTconst , PeakAreaAPT, and APTwasym imaging predict clinical outcome by means of progression-free survival. Furthermore, MTconst enables differentiation of radiation-induced pseudoprogression from disease progression. Therefore, the assessed metrics may have synergistic potential for supporting clinical decision making during follow-up of patients with glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Amidas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/radioterapia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Prótons , Curva ROC
3.
Magn Reson Med ; 88(2): 511-523, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35381111

RESUMO

PURPOSE: The non-invasive determination of the free magnesium ion concentration ([Mg2+free ]) using 31 P MRSI in vivo is of interest in research on various pathologies, e.g. diabetes. The purpose of this study was to demonstrate the potential of 31 P MRSI at 7 T to enable volumetric, high-resolution mapping of [Mg2+free ]. METHODS: 3D 31 P MRSI datasets from the lower leg of three healthy volunteers were acquired at B0  = 7 T with a nominal spatial resolution of (8 × 8 × 16) mm3 in 56 min. Volumetric [Mg2+free ] maps were calculated based on the quantified local chemical shift difference between the α- and ß-resonance of adenosine triphosphate (ATP) considering also local pH values. Mean [Mg2+free ] values from three different muscle groups were compared. To demonstrate the potential of reducing the measurement time, the analysis was repeated on the acquired MRSI data retrospectively reconstructed with fewer averages. RESULTS: The generated [Mg2+free ] maps revealed local differences, and mean [Mg2+free ] values of (1.08 ± 0.03) mM were found in the tibialis anterior, (0.91 ± 0.04) mM in the soleus and (0.98 ± 0.03) mM in the gastrocnemius medialis. The time-reduced 28-min scan resulted in comparable [Mg2+free ] maps, and mean values being in agreement with the values from the 56-min scan. CONCLUSION: 31 P MRSI at 7 T enables volumetric, high-resolution mapping of free magnesium ion content in human lower leg muscles. The measurement time of the 31 P MRSI acquisition can be reduced to 28 min, opening the potential to apply volumetric [Mg2+free ] mapping for the investigation of pathologies with altered magnesium homeostasis.


Assuntos
Perna (Membro) , Magnésio , Encéfalo , Humanos , Perna (Membro)/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Estudos Retrospectivos
4.
Magn Reson Med ; 87(5): 2436-2452, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34958684

RESUMO

PURPOSE: In principle, non-invasive mapping of the intracellular pH (pHi ) in vivo is possible using endogenous chemical exchange saturation transfer (CEST)-MRI of the amide and guanidyl signals. However, the application for cancer imaging is still impeded, as current state-of-the-art approaches do not allow for simultaneous compensation of concomitant effects that vary within tumors. In this study, we present a novel method for absolute pHi mapping using endogenous CEST-MRI, which simultaneously compensates for concentration changes, superimposing CEST signals, magnetization transfer contrast, and spillover dilution. THEORY AND METHODS: Compensation of the concomitant effects was achieved by a ratiometric approach (i.e. the ratio of one CEST signal at different B1 ) in combination with the relaxation-compensated inverse magnetization transfer ratio MTRRex and a separate first-order polynomial-Lorentzian fit of the amide and guanidyl signals at 9.4 T. Calibration of pH values was accomplished using in vivo-like model suspensions from porcine brain lysates. Applicability of the presented method in vivo was demonstrated in n = 19 tumor-bearing mice. RESULTS: In porcine brain lysates, measurement of pH was feasible over a broad range of physiologically relevant pH values of 6.2 to 8.0, while being independent of changes in concentration. A median pHi of approximately 7.2 was found in the lesions of 19 tumor-bearing mice. CONCLUSION: The presented method enables non-invasive mapping of absolute pHi values in tumors using CEST-MRI, which was so far prevented by concomitant effects. Consequently, pre-clinical studies on pHi changes in tumors are possible allowing the assessment of pHi in vivo as a biomarker for cancer diagnosis or treatment monitoring.


Assuntos
Amidas , Glioblastoma , Animais , Encéfalo , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Camundongos , Suínos
5.
Magn Reson Med ; 88(2): 546-574, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452155

RESUMO

Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.


Assuntos
Neoplasias Encefálicas , Amidas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Consenso , Dimaprit/análogos & derivados , Humanos , Imageamento por Ressonância Magnética/métodos , Prótons
6.
NMR Biomed ; 35(7): e4720, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35233847

RESUMO

In chemical exchange saturation transfer (CEST) MRI, motion correction is compromised by the drastically changing image contrast at different frequency offsets, particularly at the direct water saturation. In this study, a simple extension for conventional image registration algorithms is proposed, enabling robust and accurate motion correction of CEST-MRI data. The proposed method uses weighted averaging of motion parameters from a conventional rigid image registration to identify and mitigate erroneously misaligned images. Functionality of the proposed method was verified by ground truth datasets generated from 10 three-dimensional in vivo measurements at 3 T with simulated realistic random rigid motion patterns and noise. Performance was assessed using two different criteria: the maximum image misalignment as a measure for the robustness against direct water saturation artifacts, and the spectral error as a measure of the overall accuracy. For both criteria, the proposed method achieved the best scores compared with two motion-correction algorithms specifically developed to handle the varying contrasts in CEST-MRI. Compared with a straightforward linear interpolation of the motion parameters at frequency offsets close to the direct water saturation, the proposed method offers better performance in the absence of artifacts. The proposed method for motion correction in CEST-MRI allows identification and mitigation of direct water saturation artifacts that occur with conventional image registration algorithms. The resulting improved robustness and accuracy enable reliable motion correction, which is particularly crucial for an automated and carefree evaluation of spectral CEST-MRI data, e.g., for large patient cohorts or in clinical routines.


Assuntos
Artefatos , Água , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física)
7.
Magn Reson Med ; 86(2): 677-692, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749019

RESUMO

PURPOSE: Water exchange between the intracellular and extracellular space can be measured using apparent exchange rate (AXR) imaging. The aim of this study was to investigate the relationship between the measured AXR and the geometry of diffusion restrictions, membrane permeability, and the real exchange rate, as well as to explore the applicability of AXR for typical human measurement settings. METHODS: The AXR measurements and the underlying exchange rates were simulated using the Monte Carlo method with different geometries, size distributions, packing densities, and a broad range of membrane permeabilities. Furthermore, the influence of SNR and sequence parameters was analyzed. RESULTS: The estimated AXR values correspond to the simulated values and show the expected proportionality to membrane permeability, except for fast exchange (ie, AXR>20-30s-1 ) and small packing densities. Moreover, it was found that the duration of the filter gradient must be shorter than 2·AXR-1 . In cell size and permeability distributions, AXR depends on the average surface-to-volume ratio, permeability, and the packing density. Finally, AXR can be reliably determined in the presence of orientation dispersion in axon-like structures with sufficient gradient sampling (ie, 30 gradient directions). CONCLUSION: Currently used experimental settings for in vivo human measurements are well suited for determining AXR, with the exception of single-voxel analysis, due to limited SNR. The detection of changes in membrane permeability in diseased tissue is nonetheless challenging because of the AXR dependence on further factors, such as packing density and geometry, which cannot be disentangled without further knowledge of the underlying cell structure.


Assuntos
Imagem de Difusão por Ressonância Magnética , Água , Permeabilidade da Membrana Celular , Difusão , Humanos , Método de Monte Carlo
8.
Magn Reson Med ; 86(1): 393-404, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586217

RESUMO

PURPOSE: The value of relaxation-compensated amide proton transfer (APT) and relayed nuclear Overhauser effect (rNOE) chemical exchange saturation transfer (CEST)-MRI has already been demonstrated in various neuro-oncological clinical applications. Recently, we translated the approach from 7T to a clinically relevant magnetic field strength of 3T. However, the overall acquisition time was still too long for a broad application in the clinical setting. The aim of this study was to establish a shorter acquisition protocol whilst maintaining the contrast behavior and reproducibility. METHODS: Ten patients with glioblastoma were examined using the previous state-of-the-art acquisition protocol at 3T. The acquired spectral data were retrospectively reduced to find the minimal amount of required information that allows obtaining the same contrast behavior. To further reduce the acquisition time, also the image readout was accelerated and the pre-saturation parameters were further optimized. RESULTS: In total, the overall acquisition time could be reduced from 19 min to under 7 min. One key finding was that, when evaluated by the relaxation-compensated inverse metric, a contrast correction for B1 -field inhomogeneities at 3T can also be achieved reliably with CEST data at only one B1 value. In contrast, a 1-point B1 -correction was not sufficient for the common linear difference evaluation. The reproducibility of the new clinical routine acquisition protocol was similar to the previous state-of-the-art protocol with limits of agreement below 20%. CONCLUSIONS: The substantial reduction in acquisition time by about 64% now allows the application of 3D relaxation-compensated APT and rNOE CEST-MRI for examinations of the human brain at 3T in clinical routine.


Assuntos
Neoplasias Encefálicas , Prótons , Amidas , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos Retrospectivos
9.
Magn Reson Med ; 86(5): 2412-2425, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34061397

RESUMO

PURPOSE: To develop a framework for 3D sodium (23 Na) MR fingerprinting (MRF), based on irreducible spherical tensor operators with tailored flip angle (FA) pattern and time-efficient data acquisition for simultaneous quantification of T1 , T2l∗ , T2s∗ , and T2∗ in addition to ΔB0 . METHODS: 23 Na-MRF was implemented in a 3D sequence and irreducible spherical tensor operators were exploited in the simulations. Furthermore, the Cramér Rao lower bound was used to optimize the flip angle pattern. A combination of single and double echo readouts was implemented to increase the readout efficiency. A study was conducted to compare results in a multicompartment phantom acquired with MRF and reference methods. Finally, the relaxation times in the human brain were measured in four healthy volunteers. RESULTS: Phantom experiments revealed a mean difference of 1.0% between relaxation times acquired with MRF and results determined with the reference methods. Simultaneous quantification of the longitudinal and transverse relaxation times in the human brain was possible within 32 min using 3D 23 Na-MRF with a nominal resolution of (5 mm)3 . In vivo measurements in four volunteers yielded average relaxation times of: T1,brain = (35.0 ± 3.2) ms, T2l,brain∗ = (29.3 ± 3.8) ms and T2s,brain∗ = (5.5 ± 1.3) ms in brain tissue, whereas T1,CSF = (61.9 ± 2.8) ms and T2,CSF∗ = (46.3 ± 4.5) ms was found in cerebrospinal fluid. CONCLUSION: The feasibility of in vivo 3D relaxometric sodium mapping within roughly ½ h is demonstrated using MRF in the human brain, moving sodium relaxometric mapping toward clinically relevant measurement times.


Assuntos
Imageamento por Ressonância Magnética , Sódio , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
10.
Magn Reson Med ; 84(3): 1456-1469, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32129529

RESUMO

PURPOSE: To improve the image quality of highly accelerated multi-channel MRI data by learning a joint variational network that reconstructs multiple clinical contrasts jointly. METHODS: Data from our multi-contrast acquisition were embedded into the variational network architecture where shared anatomical information is exchanged by mixing the input contrasts. Complementary k-space sampling across imaging contrasts and Bunch-Phase/Wave-Encoding were used for data acquisition to improve the reconstruction at high accelerations. At 3T, our joint variational network approach across T1w, T2w and T2-FLAIR-weighted brain scans was tested for retrospective under-sampling at R = 6 (2D) and R = 4 × 4 (3D) acceleration. Prospective acceleration was also performed for 3D data where the combined acquisition time for whole brain coverage at 1 mm isotropic resolution across three contrasts was less than 3 min. RESULTS: Across all test datasets, our joint multi-contrast network better preserved fine anatomical details with reduced image-blurring when compared to the corresponding single-contrast reconstructions. Improvement in image quality was also obtained through complementary k-space sampling and Bunch-Phase/Wave-Encoding where the synergistic combination yielded the overall best performance as evidenced by exemplary slices and quantitative error metrics. CONCLUSION: By leveraging shared anatomical structures across the jointly reconstructed scans, our joint multi-contrast approach learnt more efficient regularizers, which helped to retain natural image appearance and avoid over-smoothing. When synergistically combined with advanced encoding techniques, the performance was further improved, enabling up to R = 16-fold acceleration with good image quality. This should help pave the way to very rapid high-resolution brain exams.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Estudos Prospectivos , Estudos Retrospectivos
11.
Magn Reson Med ; 84(4): 1707-1723, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32237169

RESUMO

PURPOSE: In vivo 31 P MRSI enables noninvasive mapping of absolute pH values via the pH-dependent chemical shifts of inorganic phosphates (Pi ). A particular challenge is the quantification of extracellular Pi with low SNR in vivo. The purpose of this study was to demonstrate feasibility of assessing both intra- and extracellular pH across the whole human brain via volumetric 31 P MRSI at 7T. METHODS: 3D 31 P MRSI data sets of the brain were acquired from three healthy volunteers and three glioma patients. Low-rank denoising was applied to enhance the SNR of 31 P MRSI data sets that enables detection of extracellular Pi at high spatial resolutions. A robust two-compartment quantification model for intra- and extracellular Pi signals was implemented. RESULTS: In particular low-rank denoising enabled volumetric mapping of intra- and extracellular pH in the human brain with voxel sizes of 5.7 mL. The average intra- and extracellular pH measured in white matter of healthy volunteers were 7.00 ± 0.00 and 7.33 ± 0.03, respectively. In tumor tissue of glioma patients, both the average intra- and extracellular pH increased to 7.12 ± 0.01 and 7.44 ± 0.01, respectively, compared to normal appearing tissue. CONCLUSION: Mapping of pH values via 31 P MRSI at 7T using the proposed two-compartment quantification model improves reliability of pH values obtained in vivo, and has the potential to provide novel insights into the pH heterogeneity of various tissues.


Assuntos
Encéfalo , Glioma , Encéfalo/diagnóstico por imagem , Glioma/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes
12.
Magn Reson Med ; 84(5): 2577-2591, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32557784

RESUMO

PURPOSE: To evaluate the feasibility of 23 Na MR fingerprinting (MRF) for simultaneous quantification of T1 , T2l∗ , T2s∗ , T2∗ in addition to ΔB0 . METHODS: A framework for sodium relaxometry using MRF at 7T was developed, allowing simultaneous measurement of relaxation times and inhomogeneities in the static field. The technique distinguishes between bi- and monoexponential transverse relaxation and was validated in simulations with respect to the ground truth. In phantom measurements, a resolution of 2 × 2 × 12 mm3 was achieved within 1 h acquisition time, and the resulting parameter maps were compared to results from reference methods. Relaxation times in five healthy volunteers were measured with a resolution of 4 × 4 × 12 mm3 . RESULTS: Phantom experiments revealed an agreement between the relaxation times obtained via 23 Na-MRF and the reference methods. In white matter, a longitudinal relaxation constant of T1 = 38.9 ± 4.8 ms was found, while values of T2l∗ = 29.2 ± 4.9 ms and T2s∗ = 4.7 ± 1.2 ms were found for the long and short component of the transverse relaxation. In cerebrospinal fluid, T1 was 67.7 ± 6.3 ms and T2∗ = 41.5 ± 3.4 ms. CONCLUSION: This work demonstrates the feasibility of 23 Na-MRF for relaxometry in sodium MRI in both phantom and in vivo studies. Simultaneous quantification of T1 , T2l∗ , T2s∗ , T2∗ and ΔB0 was possible within a 1 h measurement time.


Assuntos
Imageamento por Ressonância Magnética , Sódio , Voluntários Saudáveis , Humanos , Imagens de Fantasmas
13.
Magn Reson Med ; 83(3): 920-934, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31532006

RESUMO

PURPOSE: The application of amide proton transfer (APT) CEST MRI for diagnosis of breast cancer is of emerging interest. However, APT imaging in the human breast is affected by the ubiquitous fat signal preventing a straightforward application of existing acquisition protocols. Although the spectral region of the APT signal does not coincide with fat resonances, the fat signal leads to an incorrect normalization of the Z-spectrum, and therefore to distorted APT effects. In this study, we propose a novel normalization for APT-CEST MRI that corrects for fat signal-induced artifacts in the postprocessing without the need for application of fat saturation schemes or water-fat separation approaches. METHODS: The novel normalization uses the residual signal at the spectral position of the direct water saturation to estimate the fat contribution. A comprehensive theoretical description of the normalization for an arbitrary phase relation of the water and fat signal is provided. Functionality and applicability of the proposed normalization was demonstrated by in vitro and in vivo experiments. RESULTS: In vitro, an underestimation of the conventional APT contrast of approximately -1.2% per 1% fat fraction was observed. The novel normalization yielded an APT contrast independent of the fat contribution, which was also independent of the water-fat phase relation. This allowed APT imaging in patients with mamma carcinoma corrected for fat signal contribution, field inhomogeneities, spillover dilution, and water relaxation effects. CONCLUSION: The proposed normalization increases the specificity of APT imaging in tissues with varying fat content and represents a time-efficient and specific absorption rate-efficient alternative to fat saturation and water-fat separation approaches.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tecido Adiposo/patologia , Adulto , Algoritmos , Artefatos , Índice de Massa Corporal , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Pessoa de Meia-Idade , Distribuição Normal , Óleo de Girassol , Temperatura
14.
Magn Reson Med ; 84(1): 182-191, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31788870

RESUMO

PURPOSE: Dynamic glucose-enhanced (DGE)-MRI based on chemical exchange-sensitive MRI, that is, glucoCEST and gluco-chemical exchange-sensitive spin-lock (glucoCESL), is intrinsically prone to motion-induced artifacts because the final DGE contrast relies on the difference of images, which were acquired with a time gap of several mins. In this study, identification of different types of motion-induced artifacts led to the development of a 3D acquisition protocol for DGE examinations in the human brain at 7 T with improved robustness in the presence of subject motion. METHODS: DGE-MRI was realized by the chemical exchange-sensitive spin-lock approach based either on relaxation rate in the rotating frame (R1ρ )-weighted or quantitative R1ρ imaging. A 3D image readout was implemented at 7 T, enabling retrospective volumetric coregistration of the image series and quantification of subject motion. An examination of a healthy volunteer without administration of glucose allowed for the identification of isolated motion-induced artifacts. RESULTS: Even after coregistration, significant motion-induced artifacts remained in the DGE contrast based on R1ρ -weighted images. This is due to the spatially varying sensitivity of the coil and was found to be compensated by a quantitative R1ρ approach. The coregistered quantitative approach allowed the observation of a clear increase of the DGE contrast in a patient with glioblastoma, which did not correlate with subject motion. CONCLUSION: The presented 3D acquisition protocol enables DGE-MRI examinations in the human brain with improved robustness against motion-induced artifacts. Correction of motion-induced artifacts is of high importance for DGE-MRI in clinical studies where an unambiguous assignment of contrast changes due to an actual change in local glucose concentration is a prerequisite.


Assuntos
Artefatos , Glucose , Encéfalo/diagnóstico por imagem , Humanos , Aumento da Imagem , Imageamento por Ressonância Magnética , Movimento (Física) , Estudos Retrospectivos
15.
NMR Biomed ; 33(5): e4262, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32079047

RESUMO

Dual-frequency irradiation chemical exchange saturation transfer (dualCEST) allows imaging of endogenous bulk mobile proteins by selectively measuring the intramolecular spin diffusion. The resulting specificity to changes in the concentration, molecular size, and folding state of mobile proteins is of particular interest as a marker for neurodegenerative diseases and cancer. Until now, application of dualCEST in clinical trials was prevented by the inherently small signal-to-noise ratio and the resulting comparatively long examination time. In this study, we present an optimized acquisition protocol allowing 3D dualCEST-MRI examinations in a clinically relevant time frame. The optimization comprised the extension of the image readout to 3D, allowing a retrospective co-registration and application of denoising strategies. In addition, cosine-modulated dual-frequency presaturation pulses were implemented with a weighted acquisition scheme of the necessary frequency offsets. The optimization resulted in a signal-to-noise ratio gain by a factor of approximately 8. In particular, the application of denoising and the motion correction were the most crucial improvement steps. In vitro experiments verified the preservation of specificity of the dualCEST signal to proteins. Good-to-excellent intra-session and good inter-session repeatability was achieved, allowing reliable detection of relative signal differences of about 16% or higher. Applicability in a clinical setting was demonstrated by examining a patient with glioblastoma. The optimized acquisition protocol for dualCEST-MRI at 3 T enables selective imaging of endogenous bulk mobile proteins under clinically relevant conditions.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Proteínas do Tecido Nervoso/metabolismo , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Masculino , Reprodutibilidade dos Testes
16.
NMR Biomed ; 33(12): e4271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32078756

RESUMO

High-quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre-determined regularization while matching the image quality of state-of-the-art reconstruction techniques and avoiding over-smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1-direction data. This is made possible by a nonlinear forward-model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics-model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave-CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high-quality QSM from as few as 2-direction data.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Dinâmica não Linear , Artefatos , Humanos , Processamento de Imagem Assistida por Computador
17.
Magn Reson Med ; 81(4): 2536-2550, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30506796

RESUMO

PURPOSE: To investigate the feasibility to quantify blood velocities within the magnetic resonance fingerprinting framework, while providing relaxometric maps of static tissue. METHODS: Bipolar gradients are inserted into an SSFP-based MRF sequence to achieve velocity-dependent signal phases, allowing tri-directional time-resolved velocity component quantification. The accuracy of both relaxometric mapping and velocity quantification was validated in vivo and in phantom studies. RESULTS: Simulations determined that even for strong cardiac cycle length variations (700-1400 ms) Flow-MRF determines accurate velocity maps deviating <0.1% from the ground truth on average. The cardiac cycle length variability only results in reduced velocity-to-noise ratios. Good agreement in the velocity quantification between a standard phase-contrast cine and the Flow-MRF sequence was reached in phantom experiments. Relaxometric phantom experiments determined mean deviations between Flow-MRF and spin-echo-based reference measurements of 89 ± 25 ms / 0.8 ± 2.5 ms over the range of 630-2630 ms / 49-145 ms for T1 / T2 , respectively. The in vivo study of a human knee determined mean T1 / T2 values of 1383 ± 75 ms / 26 ± 4 ms for the gastrocnemius muscle that agree with literature values. CONCLUSION: Flow-MRF presents a novel way of quantifying velocities while simultaneously providing relaxometric maps of static tissue and it can potentially be a viable method to accelerate the inherently long acquisition times of time-resolved velocity quantification.


Assuntos
Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Algoritmos , Artefatos , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Eletrocardiografia , Feminino , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Modelos Teóricos , Processamento de Sinais Assistido por Computador
18.
Magn Reson Med ; 82(1): 159-173, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30859615

RESUMO

PURPOSE: To quantify the tissue sodium concentration (TSC) in cardiac 23 Na MRI. To evaluate the influence of different correction methods on the measured myocardial TSC. METHODS: 23 Na MRI of four healthy subjects was conducted at a whole-body 7T MRI system using an oval-shaped 23 Na birdcage coil. Data acquisition was performed with a density-adapted 3D radial pulse sequence using a golden angle projection scheme. 1 H MRI data were acquired at a 3T MRI system to generate a myocardial mask. Retrospective cardiac and respiratory gating were used to reconstruct 23 Na MRI data in the diastolic phase and exhaled state. B0 and B1 inhomogeneity and partial volume (PV) effects were corrected. Relaxation times and TSC of ex vivo blood samples and calf muscle were determined. These values were used in the PV correction to estimate myocardial TSC, which was compared with the measured TSC of calf muscle. RESULTS: Without any correction the measured myocardial TSC was (54 ± 5) mM. The applied correction methods reduced these values by (48 ± 5)% to (29 ± 3) mM, where PV correction had the largest effect (reduction of (34 ± 1)%). Respiratory and cardiac motion gating decreased the concentrations by (11 ± 1)%. With the applied setup, the corrections of B0 and B1 inhomogeneity (reduction of (3 ± 2)%) had negligible influences on TSC values. The resulting myocardial TSC was approximately 1.4-fold higher than the measured TSC of calf muscle tissue of the same healthy subjects ((20 ± 3) mM). CONCLUSION: For quantitative human cardiac 23 Na MRI several corrections are needed and ranked for our setup: PV correction, respiratory and cardiac gating, correction for B1 inhomogeneity effects.


Assuntos
Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Miocárdio/química , Sódio/análise , Adulto , Algoritmos , Feminino , Humanos , Masculino , Imagens de Fantasmas , Técnicas de Imagem de Sincronização Respiratória , Processamento de Sinais Assistido por Computador , Isótopos de Sódio/química
19.
Magn Reson Med ; 82(2): 622-632, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30927313

RESUMO

PURPOSE: Relaxation-compensated CEST-MRI (i.e., the inverse metrics magnetization transfer ratio and apparent exchange-dependent relaxation) has already been shown to provide valuable information for brain tumor diagnosis at ultrahigh magnetic field strengths. This study aims at translating the established acquisition protocol at 7 T to a clinically relevant magnetic field strength of 3 T. METHODS: Protein model solutions were analyzed at multiple magnetic field strengths to assess the spectral widths of the amide proton transfer and relayed nuclear Overhauser effect (rNOE) signals at 3 T. This prior knowledge of the spectral range of CEST signals enabled a reliable and stable Lorentzian-fitting also at 3 T where distinct peaks are no longer resolved in the Z-spectrum. In comparison to the established acquisition protocol at 7 T, also the image readout was extended to three dimensions. RESULTS: The observed spectral range of CEST signals at 3 T was approximately ±15 ppm. Final relaxation-compensated amide proton transfer and relayed nuclear Overhauser effect contrasts were in line with previous results at 7 T. Examination of a patient with glioblastoma demonstrated the applicability of this acquisition protocol in a clinical setting. CONCLUSION: The presented acquisition protocol allows relaxation-compensated CEST-MRI at 3 T with a 3D coverage of the human brain. Translation to a clinically relevant magnetic field strength of 3 T opens the door to trials with a large number of participants, thus enabling a comprehensive assessment of the clinical relevance of relaxation compensation in CEST-MRI.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Humanos , Razão Sinal-Ruído
20.
NMR Biomed ; 32(11): e4133, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31361064

RESUMO

High image signal-to-noise ratio (SNR) is required to reliably detect the inherently small chemical exchange saturation transfer (CEST) effects in vivo. In this study, it was demonstrated that identifying spectral redundancies of CEST data by principal component analysis (PCA) in combination with an appropriate data-driven extraction of relevant information can be used for an effective and robust denoising of CEST spectra. The relationship between the number of relevant principal components and SNR was studied on fitted in vivo Z-spectra with artificially introduced noise. Three different data-driven criteria to automatically determine the optimal number of necessary components were investigated. In addition, these criteria facilitate straightforward assessment of data quality that could provide guidance for CEST MR protocols in terms of SNR. Insights were applied to achieve a robust denoising of highly sampled low power Z-spectra of the human brain at 3 and 7 T. The median criterion provided the best estimation for the optimal number of components consistently for all three investigated artificial noise levels. Application of the denoising technique to in vivo data revealed a considerable increase in image quality for the amide and rNOE contrast with a considerable SNR gain. At 7 T the denoising capability was quantified to be comparable or even superior to an averaging of six measurements. The proposed denoising algorithm enables an efficient and robust denoising of CEST data by combining PCA with appropriate data-driven truncation criteria. With this generally applicable technique at hand, small CEST effects can be reliably detected without the need for repeated measurements.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Humanos , Análise de Componente Principal , Razão Sinal-Ruído , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa