Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Pharm ; 21(7): 3084-3102, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828798

RESUMO

Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.


Assuntos
Lipídeos , Nanopartículas , Nanopartículas/química , Humanos , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Portadores de Fármacos/química , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Lipossomos
2.
Sensors (Basel) ; 24(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39338775

RESUMO

This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation.


Assuntos
Separação Celular , Centrifugação , Nanopartículas de Magnetita , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Separação Celular/métodos , Centrifugação/métodos , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral , Células Sanguíneas/citologia
3.
Mol Pharm ; 20(9): 4443-4452, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37492942

RESUMO

The high blood level of low-density lipoprotein cholesterol (LDL-C) is a primary risk factor for cardiovascular disease. Plant sterols, known as phytosterols (PSs), can reduce LDL-C in a range of 8-14%. The extent of LDL-C reduction depends on its formulation. Encapsulation into liposomes is one formulation strategy to enhance the efficiency of PSs. PSs (campesterol, stigmasterol, and ß-sitosterol) have frequently been assessed alone or in combination for their LDL-C-lowering ability. However, one naturally abundant PS, brassicasterol, has not yet been tested for its efficacy. We have previously developed a novel liposomal formulation containing the PS mixture present naturally in canola that is composed of brassicasterol, campesterol, and ß-sitosterol. In this work, the efficacy of our novel liposomal PS formulation that includes brassicasterol was assessed in a hamster model. Animals were divided into five groups: (i) liposomal PS in orange juice, (ii) liposomal PS in water, (iii) marketed PS in orange juice, (iv) control orange juice, and (v) control water. The animals were fed a high-fat, cholesterol-supplemented (0.5%) diet to induce hypercholesterolemia. The treatment was administered orally once daily for 4 weeks. Fasting blood samples were collected at baseline, week 2, and week 4. The extent of the reduction of total cholesterol, LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides was compared among the groups. Liposomal PSs in both orange juice and water significantly reduced LDL-C compared to their controls. Furthermore, the liposomal PS was as effective as a marketed PS-containing product in reducing LDL-C. Liposomal PSs in both orange juice and water showed similar efficacy in LDL-C reduction, highlighting that these vehicles/food matrices do not affect the efficacy of PSs. The liposomal formulation of a natural PS mixture extracted from canola oil, with brassicasterol as a major component, exhibited a significant LDL-C reduction in a hamster model.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Fitosteróis , Animais , LDL-Colesterol , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Lipossomos , Fitosteróis/farmacologia , Colesterol , Hipercolesterolemia/tratamento farmacológico , Dieta
4.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300027

RESUMO

The treatment of cancers is a significant challenge in the healthcare context today. Spreading circulating tumor cells (CTCs) throughout the body will eventually lead to cancer metastasis and produce new tumors near the healthy tissues. Therefore, separating these invading cells and extracting cues from them is extremely important for determining the rate of cancer progression inside the body and for the development of individualized treatments, especially at the beginning of the metastasis process. The continuous and fast separation of CTCs has recently been achieved using numerous separation techniques, some of which involve multiple high-level operational protocols. Although a simple blood test can detect the presence of CTCs in the blood circulation system, the detection is still restricted due to the scarcity and heterogeneity of CTCs. The development of more reliable and effective techniques is thus highly desired. The technology of microfluidic devices is promising among many other bio-chemical and bio-physical technologies. This paper reviews recent developments in the two types of microfluidic devices, which are based on the size and/or density of cells, for separating cancer cells. The goal of this review is to identify knowledge or technology gaps and to suggest future works.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica , Técnicas Analíticas Microfluídicas/métodos , Separação Celular/métodos , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Dispositivos Lab-On-A-Chip
5.
Mol Pharm ; 16(2): 542-551, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30605337

RESUMO

Melanoma is a devastating form of skin cancer with high tendency to metastasis. This work addresses the development of new targeted nanoparticles that can be used for single-photon emission computed tomography (SPECT) imaging of melanoma. Melanoma-specific glycoprotein nonmetastatic b (GPNMB) antigen targeted and nontargeted gemini nanoparticles were prepared, characterized, and radiolabeled with 111In. 111In-labeled nanoparticles were composed of gemini surfactant grafted with monoclonal antibody Fab fragment that targeted GPNMB. Specific uptake of GPNMB-Fab was studied in six melanoma cell lines using flow cytometry. In vitro cellular uptake and internalization were studied using flow cytometry, confocal laser scanning microscopy, and radiometric techniques. Specific uptake of anti-GPNMB targeted nanoparticles was observed in GPNMB expressing cells, which was higher than low expressing or control cells. In vitro studies showed that conjugation of GPNMB targeted nanoparticles led to enhanced intracellular uptake of the nanodelivery system, which is critical for drug delivery. In vivo distribution of the nanoparticles was studied by microSPECT/CT imaging and ex vivo biodistribution. Tumor uptake was significantly higher ( p < 0.05) in nontargeted nanoparticles (5.47 ± 0.46%IA/cc) compared to GPNMB targeted nanoparticles (1.87 ± 0.27% ID/cc), which might be attributed to the high spleen uptake of the targeted formulation. These findings demonstrated that the radiolabeled gemini nanoparticles are promising for image-guided radiotherapy of melanoma. Formulation optimization is needed to improved tumor uptake and in vivo intracellular delivery for radiotherapeutic applications.


Assuntos
Calcitriol/análogos & derivados , Proteínas do Olho/metabolismo , Índio/química , Melanoma/tratamento farmacológico , Glicoproteínas de Membrana/metabolismo , Nanopartículas/química , Tensoativos/química , Tensoativos/uso terapêutico , Animais , Calcitriol/química , Calcitriol/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Melanoma/metabolismo , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único
6.
Bioconjug Chem ; 29(10): 3293-3308, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169953

RESUMO

The unique molecular structure confers the diquaternary ammonium gemini surfactants with enhanced nucleic acid complexation ability, bottom-up design flexibility, and relatively low cytotoxicity. To capitalize on their potential as gene delivery vectors, novel structural modifications should be explored. In this work, 22 novel peptide-modified gemini surfactants with various alkyl tails and peptide spacer modifications were evaluated. This work represents the first report of dendrimer-like gemini surfactants and first evaluation of the impact of incorporating a hydrocarbon linker into the peptide chain. Our aim was to establish a structure activity relationship of the peptide-modified gemini surfactants and to identify the fundamental architectural requirements needed for the ultimate gene delivery systems. In vitro assessment revealed that the highest transfection efficiency and lowest cytotoxicity were associated with the glycyl-lysine modified gemini surfactants having the hexadecyl tail, 16-7N(G-K)-16. In fact, it showed an 8-fold increase in secreted protein with 20% increase in cell viability relative to the first-generation unsubstituted gemini surfactants. Further increase in the size of the attached peptides resulted in a decrease in the transfection efficiency and cell viability. Whereas the incorporation of a hydrocarbon linker into the peptide chain decreased the transfection efficiency of compounds with dipeptides, it increased the transfection efficiency of compounds with larger peptide chains. Such an increase was more prominent with the incorporation of a longer hydrocarbon linker. We conclude that a balance between the hydrophilic and hydrophobic characteristics of the compound is necessary since it results in physicochemical parameters conducive to the gene delivery process.


Assuntos
Técnicas de Transferência de Genes , Peptídeos/química , Tensoativos/química , Animais , Linhagem Celular , Sobrevivência Celular , Dipeptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Estrutura Molecular
7.
J Pharm Pharm Sci ; 21(1): 363-375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30266136

RESUMO

Purpose Achieving successful gene therapy requires delivery of a gene vector specifically to the targeted tissue with efficient expression and a good safety profile. The objective of this work was to develop, characterize and determine if a novel gemini surfactant-based lipoplex systems, modified with a cancer-targeting peptide p18-4, could serve this role. Methods The targeting peptide p18-4 was either chemically coupled to a gemini surfactant backbone or physically co-formulated with the lipoplexes. The influence of targeting ligand and formulation strategies on essential physicochemical properties of the lipoplexes was evaluated by dynamic light scattering and small angle X-ray scattering techniques. In vitro transfection activity and cellular toxicity of lipoplexes were assessed in a model human melanoma cell line. Results All lipoplexes zeta potential and particle size were optimal for cellular uptake and physical stability of the system. The lipoplexes adopted an inverted-hexagonal lipid arrangement. The lipoplexes modified with the peptide showed no significant changes in physicochemical properties or lipoplex assembly. The modification of the lipoplexes with the targeting peptide significantly enhanced protein expression 2-6 fold compared to non-modified lipoplexes. In addition, p18-4 modified lipoplexes significantly improved the safety of the lipoplexes. The ability of the p18-4 modified lipoplexes to selectively express the model protein was confirmed by using healthy human epidermal keratinocytes (HEKa). Conclusion The gemini surfactant-based lipoplexes modified with p18-4 peptide showed significantly higher efficiency and safety compared to the system that did not contain a cancer targeting peptide and provided evidence for their potential application to achieve targeted melanoma gene therapy.


Assuntos
Antineoplásicos/farmacologia , Terapia Genética , Lipídeos/química , Melanoma/tratamento farmacológico , Modelos Biológicos , Peptídeos/farmacologia , Tensoativos/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma/patologia , Estrutura Molecular , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície , Células Tumorais Cultivadas
8.
Pharm Res ; 34(9): 1886-1896, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28643235

RESUMO

PURPOSE: We have developed and evaluated novel peptide-targeted gemini surfactant-based lipoplexes designed for melanoma gene therapy. METHODS: Integrin receptor targeting peptide, cyclic-arginylglycylaspartic acid (cRGD), was either chemically coupled to a gemini surfactant backbone or physically co-formulated with lipoplexes. Several formulations and transfection techniques were developed. Transfection efficiency and cellular toxicity of the lipoplexes were evaluated in an in vitro human melanoma model. Physicochemical properties were examined using dynamic light scattering, zeta-potential, and small-angle X-ray scattering measurements. RESULTS: RGD-modified gemini surfactant based lipoplexes showed significant enhancement in gene transfection activity in A375 cell lines compared to the standard non-targeted formulation, especially when RGD was chemically conjugated to the gemini surfactant (RGD-G). The RGD had no effect on the cell toxicity profile of the lipoplex systems. Targeting specificity was confirmed by using an excess of free RGD and negative control peptide (RAD) and was demonstrated by using normal human epidermal keratinocytes. Physicochemical characterization showed that all nanoparticles were in the optimal size range for cellular uptake and there were no significant differences between RGD-modified and standard lipoplexes. CONCLUSIONS: These findings indicate the potential of RGD-modified gemini surfactant-based lipoplexes for use in melanoma gene therapy as an alternative to conventional chemotherapy.


Assuntos
DNA/administração & dosagem , Lipídeos/química , Melanoma/terapia , Peptídeos Cíclicos/química , Tensoativos/química , Transfecção/métodos , Linhagem Celular , Linhagem Celular Tumoral , DNA/genética , DNA/uso terapêutico , Sistemas de Liberação de Medicamentos , Terapia Genética , Humanos , Integrinas/genética , Integrinas/metabolismo , Queratinócitos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Peptídeos Cíclicos/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/uso terapêutico , Tensoativos/metabolismo
9.
Rapid Commun Mass Spectrom ; 31(18): 1481-1490, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667829

RESUMO

RATIONALE: The use of the anticancer drug melphalan is limited due to its poor water solubility. To address this limitation, it is incorporated within a novel delivery system using ß-cyclodextrin-gemini surfactants (18:1ßCDg). METHODS: Herein, two fast and simple flow injection analysis/tandem mass spectrometric (FIA-MS/MS) methods are developed for the quantification of melphalan (Mel) within the drug delivery system so that the solubilization efficiency of the system can be assessed. FIA-MS/MS methods are developed using a triple quadrupole linear ion trap mass spectrometer, equipped with electrospray ionization (ESI) in the positive ion mode. A deuterated form of melphalan (melphalan-d8) was used as an internal standard (IS). The methods were validated according to the FDA guidance. RESULTS: A linearity in the range of 2-100 ng/mL and accuracy and precision below 15% were observed for all standard points and quality control samples. The intra- and inter-day variations and freeze-thaw stability were within the acceptable range according to the criteria set by regulatory guidelines. On the other hand, other stability measures, such as room temperature stability and long-term stability, did not meet the required guidelines in some cases, indicating the need for quick sample analysis upon preparation. Such a fact could have been overlooked if full method validation had not been performed. CONCLUSIONS: The developed methods were applied to determine the encapsulation/solubilization of the [18:1ßCDg/Mel] delivery system. 18:1ßCDg enhances the aqueous solubility of melphalan without the need for co-solvent. The highest melphalan solubility was observed at a melphalan18:1ßCDg/Mel complex molar ratio of 2:1. This study demonstrated that a fast analysis for the purpose of quantifying a chemically unstable drug, such as melphalan, is feasible and important for the development of commercial dosage forms.


Assuntos
Antineoplásicos/química , Análise de Injeção de Fluxo/métodos , Lipídeos/química , Melfalan/química , Espectrometria de Massas em Tandem/métodos , Sistemas de Liberação de Medicamentos , Sensibilidade e Especificidade , Solubilidade , Espectrometria de Massas por Ionização por Electrospray/métodos
10.
Mol Pharm ; 12(8): 2993-3006, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26083126

RESUMO

Host systems based on ß-cyclodextrin (ßCD) were employed as pharmaceutical carriers to encapsulate a poorly soluble drug, curcumin analogue (NC 2067), in order to increase its water solubility. ßCD was chemically conjugated with an amphiphilic gemini surfactant with the ability to self-assemble and to form nanoscale supramolecular structures. The conjugated molecule, ßCDgemini surfactant (ßCDg), was shown to be a promising drug delivery agent. In this report, its physicochemical properties were assessed in aqueous solution using 1D and 2D 1H NMR spectroscopy. The results showed that the apolar hydrocarbon domain of the gemini surfactant was self-included within the ßCD internal cavity. The host/guest complexes composed of native ßCD or ßCDg with NC 2067 were examined using 1D/2D ROESY NMR methods. The stoichiometry of ßCD/NC 2067 complex was estimated using Job's method via 1H NMR spectroscopy. The binding geometry of NC 2067 within ßCD was proposed using molecular docking and further supported by 1D and 2D ROESY NMR results. Addition of NC 2067 to ßCDg revealed minimal changes to the overall structure of the ßCDg system, in agreement with the formation of a ßCDg/NC 2067 ternary complex.


Assuntos
Alcenos/química , Antineoplásicos/química , Curcumina/química , Ciclodextrinas/química , Espectroscopia de Ressonância Magnética/métodos , Compostos de Amônio Quaternário/química , beta-Ciclodextrinas/química , Alcenos/metabolismo , Antineoplásicos/metabolismo , Química Farmacêutica/métodos , Curcumina/metabolismo , Ciclodextrinas/metabolismo , Modelos Moleculares , Estrutura Molecular , Compostos de Amônio Quaternário/metabolismo , Solubilidade , beta-Ciclodextrinas/metabolismo
11.
Micromachines (Basel) ; 15(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38930690

RESUMO

In recent years, cell migration assays (CMAs) have emerged as a tool to study the migration of cells along with their physiological responses under various stimuli, including both mechanical and bio-chemical properties. CMAs are a generic system in that they support various biological applications, such as wound healing assays. In this paper, we review the development of the CMA in the context of its application to wound healing assays. As such, the wound healing assay will be used to derive the requirements on CMAs. This paper will provide a comprehensive and critical review of the development of CMAs along with their application to wound healing assays. One salient feature of our methodology in this paper is the application of the so-called design thinking; namely we define the requirements of CMAs first and then take them as a benchmark for various developments of CMAs in the literature. The state-of-the-art CMAs are compared with this benchmark to derive the knowledge and technological gap with CMAs in the literature. We will also discuss future research directions for the CMA together with its application to wound healing assays.

12.
Front Bioeng Biotechnol ; 11: 1161804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304145

RESUMO

Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.

13.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850290

RESUMO

Polydimethylsiloxane (PDMS) is a widely used material for soft lithography and microfabrication. PDMS exhibits some promising properties suitable for building microfluidic devices; however, bonding PDMS to PDMS and PDMS to other materials for multilayer structures in microfluidic devices is still challenging due to the hydrophobic nature of the surface of PDMS. This paper presents a simple yet effective method to increase the bonding strength for PDMS-to-PDMS using isopropyl alcohol (IPA). The experiment was carried out to evaluate the bonding strength for both the natural-cured and the heat-cured PDMS layer. The results show the effectiveness of our approach in terms of the improved irreversible bonding strength, up to 3.060 MPa, for the natural-cured PDMS and 1.373 MPa for the heat-cured PDMS, while the best bonding strength with the existing method in literature is 1.9 MPa. The work is preliminary because the underlying mechanism is only speculative and open for future research.

14.
Polymers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112073

RESUMO

This paper presents a comprehensive review of the literature for fabricating PDMS microfluidic devices by employing additive manufacturing (AM) processes. AM processes for PDMS microfluidic devices are first classified into (i) the direct printing approach and (ii) the indirect printing approach. The scope of the review covers both approaches, though the focus is on the printed mold approach, which is a kind of the so-called replica mold approach or soft lithography approach. This approach is, in essence, casting PDMS materials with the mold which is printed. The paper also includes our on-going effort on the printed mold approach. The main contribution of this paper is the identification of knowledge gaps and elaboration of future work toward closing the knowledge gaps in fabrication of PDMS microfluidic devices. The second contribution is the development of a novel classification of AM processes from design thinking. There is also a contribution in clarifying confusion in the literature regarding the soft lithography technique; this classification has provided a consistent ontology in the sub-field of the fabrication of microfluidic devices involving AM processes.

15.
Pharmaceutics ; 15(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376041

RESUMO

Luteolin (LUT) is a flavonoid found in several edible and medicinal plants. It is recognized for its biological activities such as antioxidant, anti-inflammatory, neuroprotective, and antitumor effects. However, the limited water solubility of LUT leads to poor absorption after oral administration. Nanoencapsulation may improve the solubility of LUT. Nanoemulsions (NE) were selected for the encapsulation of LUT due to their biodegradability, stability, and ability to control drug release. In this work, chitosan (Ch)-based NE was developed to encapsulate luteolin (NECh-LUT). A 23 factorial design was built to obtain a formulation with optimized amounts of oil, water, and surfactants. NECh-LUT showed a mean diameter of 67.5 nm, polydispersity index 0.174, zeta potential of +12.8 mV, and encapsulation efficiency of 85.49%. Transmission electron microscopy revealed spherical shape and rheological analysis verified the Newtonian behavior of NECh-LUT. SAXS technique confirmed the bimodal characteristic of NECh-LUT, while stability analysis confirmed NECh-LUT stability when stored at room temperature for up to 30 days. Finally, in vitro release studies showed LUT controlled release up to 72 h, indicating the promising potential of NECh-LUT to be used as novel therapeutic option to treat several disorders.

16.
J Pharm Pharm Sci ; 15(4): 548-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23106958

RESUMO

PURPOSE: Cationic gemini surfactants have been studied as non-viral vectors for gene therapy. Clinical applications of cationic lipid/DNA lipoplexes are restricted by their instability in aqueous formulations. In this work, we investigated the influence of lyophilization on the essential physiochemical properties and in vitro transfection of gemini surfactant-lipoplexes. Additionally, we evaluated the feasibility of lyophilization as a technique for preparing lipoplexes with long term stability. METHODS: A gemini surfactant [12-7NH-12] and plasmid DNA encoding for interferon-γ were used to prepare gemini surfactant/pDNA [P/G] lipoplexes. Helper lipid DOPE [L] was incorporated in all formulation producing a [P/G/L] system. Sucrose and trehalose were utilized as stabilizing agents. To evaluate the ability of lyophilization to improve the stability of gemini surfactant-based lipoplexes, four lyophilized formulations were stored at 25˚C for three months. The formulations were analyzed at different time-points for physiochemical properties and in vitro transfection. RESULTS: The results showed that both sucrose and trehalose provided anticipated stabilizing effect. The transfection efficiency of the lipoplexes increased 2-3 fold compared to fresh formulations upon lyophilization. This effect can be attributed to the improvement of DNA compaction and changes in the lipoplex morphology due to the lyophilization/rehydration cycles. The physiochemical properties of the lyophilized formulations were maintained throughout the stability study. All lyophilized formulations showed a significant loss of gene transfection activity after three months of storage. Nevertheless, no significant losses of transfection efficiency were observed for three formulations after two months storage at 25 ˚C. CONCLUSION: Lyophilization significantly improved the physical stability of gemini surfactant-based lipoplexes compared to liquid formulations. As well, lyophilization improved the transfection efficiency of the lipoplexes. The loss of transfection activity upon storage is most probably due to the conformational changes in the supramolecular structure of the lipoplexes as a function of time and temperature rather than to DNA degradation.


Assuntos
DNA/química , DNA/genética , Liofilização/métodos , Técnicas de Transferência de Genes , Lipídeos/química , Tensoativos/química , Animais , Células COS , Cátions/química , Linhagem Celular , Química Farmacêutica/métodos , Chlorocebus aethiops , DNA/administração & dosagem , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Excipientes/química , Vetores Genéticos/química , Vetores Genéticos/genética , Interferon gama/química , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/genética , Sacarose/química , Transfecção/métodos , Trealose/química
17.
J Nanobiotechnology ; 10: 7, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22296763

RESUMO

BACKGROUND: Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency. RESULTS: Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-γ) was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression. CONCLUSION: Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar pattern to the unsubstituted parent gemini surfactant. Glycyl-lysine substitution in the gemini spacer improved buffering capacity and imparted a pH-dependent increase of particle size. This property conferred to the P/12-7NGK-12/L nanoparticles the ability to escape efficiently from clathrin-mediated endosomes. Balanced binding properties (protection and release) of the 12-7NGK-12 in the presence of polyanions could contribute to the facile release of the nanoparticles internalized via caveolae-mediated uptake. A more efficient endosomal escape of the P/12-7NGK-12/L nanoparticles lead to higher gene expression compared to the parent gemini surfactant.


Assuntos
Aminoácidos/química , DNA , Nanopartículas/química , Tensoativos/química , Aminoácidos/genética , Animais , Transporte Biológico , Calcitriol/análogos & derivados , Calcitriol/química , Cavéolas/metabolismo , Células Cultivadas , Clorpromazina/toxicidade , Clatrina , Endossomos/metabolismo , Expressão Gênica , Técnicas de Transferência de Genes , Concentração de Íons de Hidrogênio , Interferon gama/genética , Lipídeos/química , Microscopia Eletrônica de Transmissão , Nanopartículas/toxicidade , Tamanho da Partícula , Coelhos , Transfecção , beta-Ciclodextrinas/toxicidade
18.
Anal Chim Acta ; 1194: 339404, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063161

RESUMO

Phytosterol oxidation products (POPs) formed by the auto-oxidation of phytosterols can lead to negative health consequences. New liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantitative and qualitative approaches were developed. For quantification, sixteen phytosterol oxidation products (POPs) in liposomal formulations; namely 7-keto, 7-hydroxy, 5,6-epoxy, and 5,6-dihydroxy derivatives of brassicasterol, campesterol, stigmasterol, and ß-sitosterol were quantified. The method has a short run time of 5 min, achieved on a poroshell C18 column, using isocratic elution. To the best of our knowledge, this is the shortest run time among reported methods for the quantitative analysis of POPs. Atmospheric pressure chemical ionization (APCI) was used, and the mobile phase was composed of acetonitrile/methanol (99:1 v/v). The quantitative method was validated as per the FDA guidelines for linearity, accuracy, precision, selectivity, sensitivity, matrix effect, dilution integrity, and stability. The method was applied for the quantification of POPs in liposomal phytosterol formulations prepared with and without tocopherols, as antioxidants. The formulation process had little impact on the formation of POPs as only 7-ketobrassicasterol was quantified in tested samples. The quantified value of POPs in liposomal samples was insignificant to impart any toxicological effects. Other degradation products such as 7-hydroxy, 5,6-epoxy and 5,6-dihydroxy derivatives of brassicasterol, campesterol and ß-sitosterol were below the lower limit of quantification. Phytosterol-containing formulations were then assessed for their oxidative stability after microwave exposure for 5 min. The incorporation of tocopherols significantly increased the stability of phytosterols in the liposomal formulations. Finally, LC-MS/MS qualitative identification of phytosterols obtained from extra virgin olive oil was performed. New POPs, namely 7-ketoavenasterol, and 7-ketomethylenecycloartenol were putatively identified, illustrating the applicability of the method to identify POPs with varying structures present in various phytosterol sources. In fact, it is the first time that 7-ketomethylenecycloartenol is reported as a POP.


Assuntos
Fitosteróis , Óleos de Plantas , Cromatografia Líquida , Lipossomos , Extratos Vegetais , Espectrometria de Massas em Tandem
19.
Pharmaceutics ; 14(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145542

RESUMO

The mechanism of cellular uptake and intracellular fate of nanodiamond/nucleic acid complexes (diamoplexes) are major determinants of its performance as a gene carrier. Our group designed lysine-nanodiamonds (K-NDs) as vectors for nucleic acid delivery. In this work, we modified the surface of K-NDs with histidine to overcome endo-lysosomal entrapment diamoplexes, the major rate limiting step in gene transfer. Histidine is conjugated onto the NDs in two configurations: lysyl-histidine-NDs (HK-NDs) where histidine is loaded on 100% of the lysine moieties and lysine/lysyl-histidine-NDs (H50K50-NDs) where histidine is loaded on 50% of the lysine moieties. Both HK-NDs and H50K50-NDs maintained the optimum size distribution (i.e., <200 nm) and a cationic surface (zeta potential > 20 mV), similar to K-NDs. HK-NDs binds plasmid deoxyribonucleic acid (pDNA) and small interfering ribonucleic acid (siRNA) forming diamoplexes at mass ratios of 10:1 and 60:1, respectively. H50K50-NDs significantly improved nucleic acid binding, forming diamoplexes at a 2:1 mass ratio with pDNA and a 30:1 mass ratio with siRNA, which are at values similar to the K-NDs. The amount of histidine on the surface also impacted the interactions with mammalian cells. The HK-NDs reduced the cell viability by 30% at therapeutic concentrations, while H50K50-NDs maintained more than 90% cell viability, even at the highest concentrations. H50K50-NDs also showed highest cellular uptake within 24 h, followed by K-NDs and HK-NDs. Most functionalized NDs show cellular exit after 5 days, leaving less than 10% of cells with internalized diamonds. The addition of histidine to the ND resulted in higher transfection of anti-green fluorescent protein siRNA (anti-GFP siRNA) with the fraction of GFP knockdown being 0.8 vs. 0.6 for K-NDs at a mass ratio of 50:1. H50K50-NDs further improved transfection by achieving a similar fraction of GFP knockdown (0.8) at a lower mass ratio of 30:1. Overall, this study provides evidence that the addition of histidine, a pH-modulating entity in the functionalization design at an optimized ratio, renders high efficiency to the diamoplexes. Further studies will elucidate the uptake mechanism and intracellular fate to build the relationship between physicochemical characteristics and biological efficacy and create a platform for solid-core nanoparticle-based gene delivery.

20.
Biomater Adv ; 137: 212844, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929273

RESUMO

Enamel is the highest mineralized tissue in the body protecting teeth from external stimuli, infections, and injuries. Enamel lacks the ability to self-repair due to the absence of enamel-producing cells in the erupted teeth. Here, we reported a novel approach to promote enamel-like tissue formation via the delivery of a key ameloblast inducer, T-box1 gene, into a rat dental epithelial stem cell line, HAT-7, using non-viral gene delivery systems based on cationic lipids. We comparatively assessed the lipoplexes prepared from glycyl-lysine-modified gemini surfactants and commercially available 1,2-dioleoyl-3-trimethylammonium-propane lipids at three nitrogen-to phosphate (N/P) ratios of 2.5, 5 and 10. Our findings revealed that physico-chemical characteristics and biological activities of the gemini surfactant-based lipoplexes with a N/P ratio of 5 provide the most optimal outcomes among those examined. HAT-7 cells were transfected with T-box1 gene using the optimal formulation then cultured in conventional 2D cell culture systems. Ameloblast differentiation, mineralization, bio-enamel interface and structure were assessed at different time points over 28 days. Our results showed that our gemini transfection system provides superior gene expression compared to the benchmark agent, while keeping low cytotoxicity levels. T-box1-transfected HAT-7 cells strongly expressed markers of secretory and maturation stages of the ameloblasts, deposited minerals, and produced enamel-like crystals when compared to control cells. Taken together, our gemini surfactant-based T-box1 gene delivery system is effective to accelerate and guide ameloblastic differentiation of dental epithelial stem cells and promote enamel-like tissue formation. This study would represent a significant advance towards the tissue engineering and regeneration of dental enamel.


Assuntos
Nanopartículas , Surfactantes Pulmonares , Animais , Diferenciação Celular , Esmalte Dentário , Excipientes , Técnicas de Transferência de Genes , Lipoproteínas , Nanopartículas/química , Ratos , Células-Tronco , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa