Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurophysiol ; 124(5): 1530-1549, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997561

RESUMO

A variety of visual cues can trigger defensive reactions in mice and other species. In mice, looming stimuli that mimic an approaching aerial predator elicit flight or freezing reactions, while sweeping stimuli that mimic an aerial predator flying parallel to the ground typically elicit freezing. The retinal ganglion cell (RGC) types involved in these circuits are largely unknown. We previously discovered that loss of RGC subpopulations in Brn3b knockout mice results in distinct visual response deficits. Here, we report that retinal or global loss of Brn3b selectively ablates the fleeing response to looming stimuli while leaving the freeze response intact. In contrast, freezing responses to sweeping stimuli are significantly affected. Genetic manipulations removing three RGC subpopulations (Brn3a+ betta RGCs, Opn4+Brn3b+, and Brn3c+Brn3b+ RGCs) result in milder phenocopies of Brn3b knockout response deficits. These findings show that flight and freezing responses to distinct visual cues are mediated by circuits that can already be separated at the level of the retina, potentially by enlisting dedicated RGC types.NEW & NOTEWORTHY Flight and freezing response choices evoked by visual stimuli are controlled by brain stem and thalamic circuits. Genetically modified mice with loss of specific retinal ganglion cell (RGC) subpopulations have altered flight versus freezing choices in response to some but not other visual stimuli. This finding suggests that "threatening" visual stimuli may be computed already at the level of the retina and communicated via dedicated pathways (RGCs) to the brain.


Assuntos
Aprendizagem da Esquiva/fisiologia , Células Ganglionares da Retina/fisiologia , Percepção Visual/fisiologia , Animais , Comportamento Animal , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/fisiologia
2.
Proc Natl Acad Sci U S A ; 114(20): E3974-E3983, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28465430

RESUMO

Visual information is conveyed from the eye to the brain by distinct types of retinal ganglion cells (RGCs). It is largely unknown how RGCs acquire their defining morphological and physiological features and connect to upstream and downstream synaptic partners. The three Brn3/Pou4f transcription factors (TFs) participate in a combinatorial code for RGC type specification, but their exact molecular roles are still unclear. We use deep sequencing to define (i) transcriptomes of Brn3a- and/or Brn3b-positive RGCs, (ii) Brn3a- and/or Brn3b-dependent RGC transcripts, and (iii) transcriptomes of retinorecipient areas of the brain at developmental stages relevant for axon guidance, dendrite formation, and synaptogenesis. We reveal a combinatorial code of TFs, cell surface molecules, and determinants of neuronal morphology that is differentially expressed in specific RGC populations and selectively regulated by Brn3a and/or Brn3b. This comprehensive molecular code provides a basis for understanding neuronal cell type specification in RGCs.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3/metabolismo , Animais , Orientação de Axônios , Encéfalo/embriologia , Comunicação Celular , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Células Ganglionares da Retina/citologia , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 114(10): 2741-2746, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223508

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and mediate several non-image-forming visual functions, including circadian photoentrainment and the pupillary light reflex (PLR). ipRGCs act as autonomous photoreceptors via the intrinsic melanopsin-based phototransduction pathway and as a relay for rod/cone input via synaptically driven responses. Under low light intensities, where only synaptically driven rod/cone input activates ipRGCs, the duration of the ipRGC response will be determined by the termination kinetics of the rod/cone circuits. Little is known, however, about the termination kinetics of the intrinsic melanopsin-based phototransduction pathway and its contribution to several melanopsin-mediated behaviors. Here, we show that C-terminal phosphorylation of melanopsin determines the recovery kinetics of the intrinsic melanopsin-based photoresponse in ipRGCs, the duration of the PLR, and the speed of reentrainment. In contrast, circadian phase alignment and direct effects of light on activity (masking) are not influenced by C-terminal phosphorylation of melanopsin. Electrophysiological measurements demonstrate that expression of a virally encoded melanopsin lacking all C-terminal phosphorylation sites (C terminus phosphonull) leads to a prolonged intrinsic light response. In addition, mice expressing the C terminus phosphonull in ipRGCs reentrain faster to a delayed light/dark cycle compared with mice expressing virally encoded WT melanopsin; however, the phase angle of entrainment and masking were indistinguishable. Importantly, a sustained PLR in the phosphonull animals is only observed at brighter light intensities that activate melanopsin phototransduction, but not at dimmer light intensities that activate only the rod/cone pathway. Taken together, our results highlight how the kinetics of the melanopsin photoresponse differentially regulate distinct light-mediated behaviors.


Assuntos
Comportamento Animal , Transdução de Sinal Luminoso/genética , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Ritmo Circadiano/genética , Cinética , Luz , Transdução de Sinal Luminoso/fisiologia , Camundongos , Técnicas de Patch-Clamp , Fosforilação/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Reflexo Pupilar/genética , Reflexo Pupilar/fisiologia , Retina/metabolismo , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/química , Opsinas de Bastonetes/genética , Sinapses/genética , Sinapses/metabolismo , Visão Ocular/genética , Visão Ocular/fisiologia
4.
J Neurophysiol ; 118(1): 300-316, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424291

RESUMO

During animal locomotion or position adjustments, the visual system uses image stabilization reflexes to compensate for global shifts in the visual scene. These reflexes elicit compensatory head movements (optomotor response, OMR) in unrestrained animals or compensatory eye movements (optokinetic response, OKR) in head-fixed or unrestrained animals exposed to globally rotating striped patterns. In mice, OMR are relatively easy to observe and find broad use in the rapid evaluation of visual function. OKR determinations are more involved experimentally but yield more stereotypical, easily quantifiable results. The relative contributions of head and eye movements to image stabilization in mice have not been investigated. We are using newly developed software and apparatus to accurately quantitate mouse head movements during OMR, quantitate eye movements during OKR, and determine eye movements in freely behaving mice. We provide the first direct comparison of OMR and OKR gains (head or eye velocity/stimulus velocity) and find that the two reflexes have comparable dependencies on stimulus luminance, contrast, spatial frequency, and velocity. OMR and OKR are similarly affected in genetically modified mice with defects in retinal ganglion cells (RGC) compared with wild-type, suggesting they are driven by the same sensory input (RGC type). OKR eye movements have much higher gains than the OMR head movements, but neither can fully compensate global visual shifts. However, combined eye and head movements can be detected in unrestrained mice performing OMR, suggesting they can cooperate to achieve image stabilization, as previously described for other species.NEW & NOTEWORTHY We provide the first quantitation of head gain during optomotor response in mice and show that optomotor and optokinetic responses have similar psychometric curves. Head gains are far smaller than eye gains. Unrestrained mice combine head and eye movements to respond to visual stimuli, and both monocular and binocular fields are used during optokinetic responses. Mouse OMR and OKR movements are heterogeneous under optimal and suboptimal stimulation and are affected in mice lacking ON direction-selective retinal ganglion cells.


Assuntos
Movimentos Oculares , Movimentos da Cabeça , Reflexo , Percepção Visual , Animais , Feminino , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Células Ganglionares da Retina/fisiologia , Software
5.
J Neurosci ; 32(3): 995-1007, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22262898

RESUMO

The three members of the Brn3 family of POU-domain transcription factors (Brn3a/Pou4f1, Brn3b/Pou4f2, and Brn3c/Pou4f3) are expressed in overlapping subsets of visual, auditory/vestibular, and somatosensory neurons. Using unmarked Brn3-null alleles and Brn3 conditional alleles in which gene loss is coupled to expression of an alkaline phosphatase reporter, together with sparse Cre-mediated recombination, we describe the following: (1) the overlapping patterns of Brn3 gene expression in somatosensory neurons; (2) the manner in which these patterns correlate with molecular markers, peripheral afferent arbor morphologies, and dorsal horn projections; and (3) the consequences for these neurons of deleting individual Brn3 genes in the mouse. We observe broad expression of Brn3a among DRG neurons, but subtype-restricted expression of Brn3b and Brn3c. We also observe a nearly complete loss of hair follicle-associated sensory endings among Brn3a(-/-) neurons. Together with earlier analyses of Brn3 gene expression patterns in the retina and inner ear, these experiments suggest a deep functional similarity among primary somatosensory neurons, spiral and vestibular ganglion neurons, and retinal ganglion cells. This work also demonstrates the utility of sparse genetically directed labeling for visualizing individual somatosensory afferent arbors and for defining cell-autonomous mutant phenotypes.


Assuntos
Sistema Nervoso Central/citologia , Regulação da Expressão Gênica/fisiologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Fator de Transcrição Brn-3/metabolismo , Animais , Axônios/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas do Olho/genética , Feminino , Regulação da Expressão Gênica/genética , Glicoproteínas/metabolismo , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Parvalbuminas/metabolismo , Proteína Quinase C , Proteínas/genética , RNA não Traduzido , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/genética , Células Receptoras Sensoriais/classificação , Pele/inervação , Fator de Transcrição Brn-3/genética
6.
PLoS One ; 18(9): e0285295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733805

RESUMO

The spinal dorsal horn comprises heterogeneous neuronal populations, that interconnect with one another to form neural circuits modulating various types of sensory information. Decades of evidence has revealed that transcription factors expressed in each neuronal progenitor subclass play pivotal roles in the cell fate specification of spinal dorsal horn neurons. However, the development of subtypes of these neurons is not fully understood in more detail as yet and warrants the investigation of additional transcription factors. In the present study, we examined the involvement of the POU domain-containing transcription factor Brn3a in the development of spinal dorsal horn neurons. Analyses of Brn3a expression in the developing spinal dorsal horn neurons in mice demonstrated that the majority of the Brn3a-lineage neurons ceased Brn3a expression during embryonic stages (Brn3a-transient neurons), whereas a limited population of them continued to express Brn3a at high levels after E18.5 (Brn3a-persistent neurons). Loss of Brn3a disrupted the localization pattern of Brn3a-persistent neurons, indicating a critical role of this transcription factor in the development of these neurons. In contrast, Brn3a overexpression in Brn3a-transient neurons directed their localization in a manner similar to that in Brn3a-persistent neurons. Moreover, Brn3a-overexpressing neurons exhibited increased axonal extension to the ventral and ventrolateral funiculi, where the axonal tracts of Brn3a-persistent neurons reside. These results suggest that Brn3a controls the soma localization and axonal extension patterns of Brn3a-persistent spinal dorsal horn neurons.


Assuntos
Neurônios , Células do Corno Posterior , Animais , Camundongos , Axônios , Diferenciação Celular , Fatores de Transcrição/genética
7.
Nat Commun ; 13(1): 374, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042858

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Dry AMD has unclear etiology and no treatment. Lipid-rich drusen are the hallmark of dry AMD. An AMD mouse model and insights into drusenogenesis are keys to better understanding of this disease. Chloride intracellular channel 4 (CLIC4) is a pleomorphic protein regulating diverse biological functions. Here we show that retinal pigment epithelium (RPE)-specific Clic4 knockout mice exhibit a full spectrum of functional and pathological hallmarks of dry AMD. Multidisciplinary longitudinal studies of disease progression in these mice support a mechanistic model that links RPE cell-autonomous aberrant lipid metabolism and transport to drusen formation.


Assuntos
Canais de Cloreto/genética , Degeneração Macular/genética , Proteínas Mitocondriais/genética , Mutação/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Morte Celular , Canais de Cloreto/deficiência , Modelos Animais de Doenças , Fundo de Olho , Homeostase , Metabolismo dos Lipídeos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Especificidade de Órgãos/genética , Drusas Retinianas/complicações , Drusas Retinianas/diagnóstico por imagem , Drusas Retinianas/patologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/fisiopatologia , Epitélio Pigmentado da Retina/ultraestrutura , Fatores de Risco , Transcrição Gênica , Visão Ocular/fisiologia
8.
Neural Dev ; 16(1): 5, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548095

RESUMO

BACKGROUND: While the transcriptional code governing retinal ganglion cell (RGC) type specification begins to be understood, its interplay with neurotrophic signaling is largely unexplored. In mice, the transcription factor Brn3a/Pou4f1 is expressed in most RGCs, and is required for the specification of RGCs with small dendritic arbors. The Glial Derived Neurotrophic Factor (GDNF) receptor Ret is expressed in a subset of RGCs, including some expressing Brn3a, but its role in RGC development is not defined. METHODS: Here we use combinatorial genetic experiments using conditional knock-in reporter alleles at the Brn3a and Ret loci, in combination with retina- or Ret specific Cre drivers, to generate complete or mosaic genetic ablations of either Brn3a or Ret in RGCs. We then use sparse labelling to investigate Brn3a and Ret gene dosage effects on RGC dendritic arbor morphology. In addition, we use immunostaining and/or gene expression profiling by RNASeq to identify transcriptional targets relevant for the potential Brn3a-Ret interaction in RGC development. RESULTS: We find that mosaic gene dosage manipulation of the transcription factor Brn3a/Pou4f1 in neurotrophic receptor Ret heterozygote RGCs results in altered cell fate decisions and/or morphological dendritic defects. Specific RGC types are lost if Brn3a is ablated during embryogenesis and only mildly affected by postnatal Brn3a ablation. Sparse but not complete Brn3a heterozygosity combined with complete Ret heterozygosity has striking effects on RGC type distribution. Brn3a only mildly modulates Ret transcription, while Ret knockouts exhibit slightly skewed Brn3a and Brn3b expression during development that is corrected by adult age. Brn3a loss of function modestly but significantly affects distribution of Ret co-receptors GFRα1-3, and neurotrophin receptors TrkA and TrkC in RGCs. CONCLUSIONS: Based on these observations, we propose that Brn3a and Ret converge onto developmental pathways that control RGC type specification, potentially through a competitive mechanism requiring signaling from the surrounding tissue.


Assuntos
Receptores de Fator de Crescimento Neural , Células Ganglionares da Retina , Animais , Camundongos , Retina , Fator de Transcrição Brn-3A/genética
9.
Nat Commun ; 12(1): 1451, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649316

RESUMO

Proprioceptive feedback mainly derives from groups Ia and II muscle spindle (MS) afferents and group Ib Golgi tendon organ (GTO) afferents, but the molecular correlates of these three afferent subtypes remain unknown. We performed single cell RNA sequencing of genetically identified adult proprioceptors and uncovered five molecularly distinct neuronal clusters. Validation of cluster-specific transcripts in dorsal root ganglia and skeletal muscle demonstrates that two of these clusters correspond to group Ia MS afferents and group Ib GTO afferent proprioceptors, respectively, and suggest that the remaining clusters could represent group II MS afferents. Lineage analysis between proprioceptor transcriptomes at different developmental stages provides evidence that proprioceptor subtype identities emerge late in development. Together, our data provide comprehensive molecular signatures for groups Ia and II MS afferents and group Ib GTO afferents, enabling genetic interrogation of the role of individual proprioceptor subtypes in regulating motor output.


Assuntos
Mecanorreceptores/metabolismo , Fusos Musculares/metabolismo , Neurônios Aferentes/metabolismo , Animais , Calbindina 2/metabolismo , Fenômenos Eletrofisiológicos , Canais Iônicos/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Propriocepção , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Neurotransmissores/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma/genética
10.
J Comp Neurol ; 529(8): 1926-1953, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33135183

RESUMO

Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3C/metabolismo , Alelos , Animais , Técnicas de Introdução de Genes/métodos , Proteínas de Homeodomínio/genética , Integrases , Camundongos , Fator de Transcrição Brn-3C/genética , Vias Visuais/citologia , Vias Visuais/metabolismo
11.
J Comp Neurol ; 527(1): 187-211, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27391320

RESUMO

Ganglion cells (GCs), the retinal output neurons, receive synaptic inputs from bipolar and amacrine cells in the inner plexiform layer (IPL) and send information to the brain nuclei via the optic nerve. Although GCs constitute less than 1% of the total retinal cells, they occur in numerous types and are the first neurons formed during retinal development. Using Brn3a and Brn3b mutant mice in which the alkaline phosphatase gene was knocked-in (Badea et al. [Neuron] 2009;61:852-864; Badea and Nathans [Vision Res] 2011;51:269-279), we studied the general effects after gene removal on the retinal neuropil together with the consequences of lack of development of large numbers of GCs onto the remaining retinal neurons of the same class. We analyzed the morphology, number, and general architecture of various neuronal types presynaptic to GCs, searching for changes secondary to the decrement in the number of their postsynaptic partners, as well as the morphology and distribution of retinal astrocytes, for their strong topographical relation to GCs. We found that, despite GC losses, retinal organization in Brn3 null mice is remarkably similar to that of wild-type controls. J. Comp. Neurol. 527:187-211, 2019. © 2016 Wiley Periodicals, Inc.


Assuntos
Retina/citologia , Células Ganglionares da Retina/citologia , Fator de Transcrição Brn-3A/deficiência , Fator de Transcrição Brn-3B/deficiência , Animais , Proteínas de Homeodomínio , Camundongos , Camundongos Knockout , Retina/metabolismo , Retina/ultraestrutura , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura
12.
Neural Dev ; 13(1): 15, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29958540

RESUMO

BACKGROUND: About 20-30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. The developmental mechanisms by which RGCs are specified are still largely unknown. Brn3a is a member of the Brn3/Pou4f transcription factor family, which contains key regulators of RGC postmitotic specification. In particular, Brn3a ablation results in the loss of RGCs with small, thick and dense dendritic arbors ('midget-like' RGCs), and morphological changes in other RGC subpopulations. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts. METHODS: We now focus on a subset of 28 candidate genes encoding potential cell type determinant proteins. We validate and further define their retinal expression profile at five postnatal developmental time points between birth and adult stage, using in situ hybridization (ISH), RT-PCR and fluorescent immunodetection (IIF). RESULTS: We find that a majority of candidate genes are enriched in the ganglion cell layer during early stages of postnatal development, but dynamically change their expression profile. We also document transcript-specific expression differences for two example candidates, using RT-PCR and ISH. Brn3a dependency could be confirmed by ISH and IIF only for a fraction of our candidates. CONCLUSIONS: Amongst our candidate Brn3a target genes, a majority demonstrated ganglion cell layer specificity, however only around two thirds showed Brn3a dependency. Some were previously implicated in RGC type specification, while others have known physiological functions in RGCs. Only three genes were found to be consistently regulated by Brn3a throughout postnatal retina development - Mapk10, Tusc5 and Cdh4.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/classificação , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3A/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Retina/citologia , Estatísticas não Paramétricas , Fator de Transcrição Brn-3A/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
J Comp Neurol ; 526(4): 742-766, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218725

RESUMO

We report the retinal expression pattern of Ret, a receptor tyrosine kinase for the glial derived neurotrophic factor (GDNF) family ligands (GFLs), during development and in the adult mouse. Ret is initially expressed in retinal ganglion cells (RGCs), followed by horizontal cells (HCs) and amacrine cells (ACs), beginning with the early stages of postmitotic development. Ret expression persists in all three classes of neurons in the adult. Using RNA sequencing, immunostaining and random sparse recombination, we show that Ret is expressed in at least three distinct types of ACs, and ten types of RGCs. Using intersectional genetics, we describe the dendritic arbor morphologies of RGC types expressing Ret in combination with each of the three members of the POU4f/Brn3 family of transcription factors. Ret expression overlaps with Brn3a in 4 RGC types, with Brn3b in 5 RGC types, and with Brn3c in one RGC type, respectively. Ret+ RGCs project to the lateral geniculate nucleus (LGN), pretectal area (PTA) and superior colliculus (SC), and avoid the suprachiasmatic nucleus and accessory optic system. Brn3a+ Ret+ and Brn3c+ Ret+ RGCs project preferentially to contralateral retinorecipient areas, while Brn3b+ Ret+ RGCs shows minor ipsilateral projections to the olivary pretectal nucleus and the LGN. Our findings establish intersectional genetic approaches for the anatomic and developmental characterization of individual Ret+ RGC types. In addition, they provide necessary information for addressing the potential interplay between GDNF neurotrophic signaling and transcriptional regulation in RGC type specification.


Assuntos
Células Amácrinas/enzimologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células Ganglionares da Retina/enzimologia , Células Horizontais da Retina/enzimologia , Células Amácrinas/citologia , Animais , Dendritos/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos Transgênicos , Células Ganglionares da Retina/citologia , Células Horizontais da Retina/citologia , Fator de Transcrição Brn-3A/metabolismo , Vias Visuais/citologia , Vias Visuais/enzimologia , Vias Visuais/crescimento & desenvolvimento
14.
J Comp Neurol ; 524(5): 1033-61, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26356988

RESUMO

During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.


Assuntos
Nervos Cranianos/embriologia , Nervos Cranianos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Fator de Transcrição Brn-3B/biossíntese , Fator de Transcrição Brn-3B/genética , Animais , Nervos Cranianos/crescimento & desenvolvimento , Feminino , Técnicas de Introdução de Genes , Camundongos , Camundongos Transgênicos , Gravidez
15.
J Comp Neurol ; 480(4): 331-51, 2004 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-15558785

RESUMO

An alkaline phosphatase (AP) reporter has been used to visualize detailed morphologies for all major classes of retinal neurons in the adult mouse. The analysis was performed on retinas in which AP expression was activated by Cre-mediated DNA recombination in a small fraction of cells. Recombination was controlled pharmacologically and, to a first approximation, appears to have occurred randomly. The morphologies of 794 inner retinal neurons have been analyzed by measuring arbor area, stratification level, and neurite branching patterns. When analyzed in this multidimensional parametric space, the cells can be clustered into subgroups by visual inspection and by using the Ward's and K-means algorithms. One application of this cell morphology data set and cluster analysis is as a standard for comparison with the retinas of genetically altered mice. This work illustrates the utility and feasibility of genetically directed marking methods for large-scale surveys of neuronal morphology.


Assuntos
Fosfatase Alcalina/análise , Interneurônios/citologia , Retina/citologia , Células Ganglionares da Retina/citologia , Fosfatase Alcalina/genética , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Análise por Conglomerados , Feminino , Genes Reporter , Interneurônios/classificação , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/classificação , Células Ganglionares da Retina/metabolismo
16.
PLoS One ; 9(3): e91435, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24608965

RESUMO

BACKGROUND: Genetic targeting methods have greatly advanced our understanding of many of the 20 Retinal Ganglion Cell (RGC) types conveying visual information from the eyes to the brain. However, the complexity and partial overlap of gene expression patterns in RGCs call for genetic intersectional or sparse labeling strategies. Loci carrying the Cre recombinase in conjunction with conditional knock-out, reporter or other genetic tools can be used for targeted cell type ablation and functional manipulation of specific cell populations. The three members of the Pou4f family of transcription factors, Brn3a, Brn3b and Brn3c, expressed early during RGC development and in combinatorial pattern amongst RGC types are excellent candidates for such gene manipulations. METHODS AND FINDINGS: We generated conditional Cre knock-in alleles at the Brn3a and Brn3b loci, Brn3a(CKOCre) and Brn3b(CKOCre). When crossed to mice expressing the Dre recombinase, the endogenous Brn3 gene expressed by Brn3a(CKOCre) or Brn3b(CKOCre) is removed and replaced with a Cre recombinase, generating Brn3a(Cre) and Brn3b(Cre) knock-in alleles. Surprisingly both Brn3a(Cre) and Brn3b(Cre) knock-in alleles induce early ubiquitous recombination, consistent with germline expression. However in later stages of development, their expression is limited to the expected endogenous pattern of the Brn3a and Brn3b genes. We use the Brn3a(Cre) and Brn3b(Cre) alleles to target a Cre dependent Adeno Associated Virus (AAV) reporter to RGCs and demonstrate its use in morphological characterization, early postnatal gene delivery and tracing the expression of Brn3 genes in RGCs. CONCLUSIONS: Dre recombinase effectively recombines the Brn3a(CKOCre) and Brn3b(CKOCre) alleles containing its roxP target sites. Sequential Dre to Cre recombination reveals Brn3a and Brn3b expression in early mouse development. The generated Brn3a(Cre) and Brn3b(Cre) alleles are useful tools that can target exogenously delivered Cre dependent reagents to RGCs in early postnatal development, opening up a large range of potential applications.


Assuntos
Engenharia Genética/métodos , Integrases/metabolismo , Recombinação Genética , Células Ganglionares da Retina/metabolismo , Coloração e Rotulagem , Alelos , Animais , Feminino , Técnicas de Introdução de Genes , Loci Gênicos/genética , Camundongos , Camundongos Transgênicos , Gravidez , Fatores de Tempo , Fator de Transcrição Brn-3/genética
17.
Vision Res ; 51(2): 269-79, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20826176

RESUMO

The mammalian retina contains more than 50 distinct neuronal types, which are broadly classified into several major classes: photoreceptor, bipolar, horizontal, amacrine, and ganglion cells. Although some of the developmental mechanisms involved in the differentiation of retinal ganglion cells (RGCs) are beginning to be understood, there is little information regarding the genetic and molecular determinants of the distinct morphologies of the 15-20 mammalian RGC cell types. Previous work has shown that the transcription factor Brn3b/Pou4f2 plays a major role in the development and survival of many RGCs. The roles of the closely related family members, Brn3a/Pou4f1 and Brn3c/Pou4f3 in RGC development are less clear. Using a genetically-directed method for sparse cell labeling and sparse conditional gene ablation in mice, we describe here the sets of RGC types in which each of the three Brn3/Pou4f transcription factors are expressed and the consequences of ablating these factors on the development of RGC morphologies.


Assuntos
Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Fator de Transcrição Brn-3A/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Fator de Transcrição Brn-3C/metabolismo , Animais , Genótipo , Camundongos , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3C/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa