Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cytotherapy ; 25(5): 490-501, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781360

RESUMO

B-cell maturation antigen (BCMA) is a clinically validated target for multiple myeloma. T-cell engineered with chimeric antigen receptors (CARs) directed against BCMA have demonstrated robust therapeutic activity in clinical trials, but toxicities remain a significant concern for a subset of patients, supporting continued investigation of other engineered T-cell platforms that may offer equal efficacy with an improved toxicity profile. The authors recently described a BCMA-specific, T-cell-centric synthetic antigen receptor, the T-cell antigen coupler (TAC) receptor, that can be used to engineer T-cell with robust anti-myeloma activity. Here the authors describe the creation of a fully humanized BCMA-specific TAC receptor. Single-chain variable fragments (scFvs) were developed from BCMA-specific F(ab)s that were identified in a fully human phage display library. Twenty-four configurations of the F(ab)s were evaluated in a medium-throughput screening using primary T-cell, and a single F(ab), TRAC 3625, emerged as the most robust following in vitro and in vivo evaluation. An optimized BCMA-specific TAC receptor was developed through iterations of the BCMA-TAC design that evaluated a next-generation TAC scaffold sequence, different domains connecting the TAC to the 3625 scFv and different orientations of the TRAC 3625 heavy and light variable regions.


Assuntos
Mieloma Múltiplo , Linfócitos T , Humanos , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T
2.
Br J Cancer ; 122(11): 1630-1637, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238921

RESUMO

BACKGROUND: In this first-in-human, Phase 1 study of a microRNA-based cancer therapy, the recommended Phase 2 dose (RP2D) of MRX34, a liposomal mimic of microRNA-34a (miR-34a), was determined and evaluated in patients with advanced solid tumours. METHODS: Adults with various solid tumours refractory to standard treatments were enrolled in 3 + 3 dose-escalation cohorts and, following RP2D determination, expansion cohorts. MRX34, with oral dexamethasone premedication, was given intravenously daily for 5 days in 3-week cycles. RESULTS: Common all-cause adverse events observed in 85 patients enrolled included fever (% all grade/G3: 72/4), chills (53/14), fatigue (51/9), back/neck pain (36/5), nausea (36/1) and dyspnoea (25/4). The RP2D was 70 mg/m2 for hepatocellular carcinoma (HCC) and 93 mg/m2 for non-HCC cancers. Pharmacodynamic results showed delivery of miR-34a to tumours, and dose-dependent modulation of target gene expression in white blood cells. Three patients had PRs and 16 had SD lasting ≥4 cycles (median, 19 weeks, range, 11-55). CONCLUSION: MRX34 treatment with dexamethasone premedication demonstrated a manageable toxicity profile in most patients and some clinical activity. Although the trial was closed early due to serious immune-mediated AEs that resulted in four patient deaths, dose-dependent modulation of relevant target genes provides proof-of-concept for miRNA-based cancer therapy. CLINICAL TRIAL REGISTRATION: NCT01829971.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , MicroRNAs/administração & dosagem , MicroRNAs/efeitos adversos , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacocinética , Feminino , Humanos , Lipossomos/efeitos adversos , Lipossomos/farmacocinética , Masculino , Dose Máxima Tolerável , MicroRNAs/farmacocinética , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos
3.
Invest New Drugs ; 35(2): 180-188, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27917453

RESUMO

Purpose Naturally occurring tumor suppressor microRNA-34a (miR-34a) downregulates the expression of >30 oncogenes across multiple oncogenic pathways, as well as genes involved in tumor immune evasion, but is lost or under-expressed in many malignancies. This first-in-human, phase I study assessed the maximum tolerated dose (MTD), safety, pharmacokinetics, and clinical activity of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumors. Patients and Methods Adult patients with solid tumors refractory to standard treatment were enrolled in a standard 3 + 3 dose escalation trial. MRX34 was given intravenously twice weekly (BIW) for three weeks in 4-week cycles. Results Forty-seven patients with various solid tumors, including hepatocellular carcinoma (HCC; n = 14), were enrolled. Median age was 60 years, median prior therapies was 4 (range, 1-12), and most were Caucasian (68%) and male (57%). Most common adverse events (AEs) included fever (all grade %/G3%: 64/2), fatigue (57/13), back pain (57/11), nausea (49/2), diarrhea (40/11), anorexia (36/4), and vomiting (34/4). Laboratory abnormalities included lymphopenia (G3%/G4%: 23/9), neutropenia (13/11), thrombocytopenia (17/0), increased AST (19/4), hyperglycemia (13/2), and hyponatremia (19/2). Dexamethasone premedication was required to manage infusion-related AEs. The MTD for non-HCC patients was 110 mg/m2, with two patients experiencing dose-limiting toxicities of G3 hypoxia and enteritis at 124 mg/m2. The half-life was >24 h, and Cmax and AUC increased with increasing dose. One patient with HCC achieved a prolonged confirmed PR lasting 48 weeks, and four patients experienced SD lasting ≥4 cycles. Conclusion MRX34 treatment with dexamethasone premedication was associated with acceptable safety and showed evidence of antitumor activity in a subset of patients with refractory advanced solid tumors. The MTD for the BIW schedule was 110 mg/m2 for non-HCC and 93 mg/m2 for HCC patients. Additional dose schedules of MRX34 have been explored to improve tolerability.


Assuntos
Antineoplásicos/administração & dosagem , MicroRNAs/administração & dosagem , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Esquema de Medicação , Feminino , Humanos , Lipossomos , Masculino , Dose Máxima Tolerável , MicroRNAs/efeitos adversos , MicroRNAs/farmacocinética , MicroRNAs/uso terapêutico , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Neoplasias/metabolismo , Resultado do Tratamento
4.
Mol Ther ; 22(8): 1494-1503, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24791940

RESUMO

The microRNA (miR)-200s and their negative regulator ZEB1 have been extensively studied in the context of the epithelial-mesenchymal transition. Loss of miR-200s has been shown to enhance cancer aggressiveness and metastasis, whereas replacement of miR-200 miRNAs has been shown to inhibit cell growth in several types of tumors, including lung cancer. Here, we reveal a novel function of miR-200c, a member of the miR-200 family, in regulating intracellular reactive oxygen species signaling and explore a potential application for its use in combination with therapies known to increase oxidative stress such as radiation. We found that miR-200c overexpression increased cellular radiosensitivity by direct regulation of the oxidative stress response genes PRDX2, GAPB/Nrf2, and SESN1 in ways that inhibits DNA double-strand breaks repair, increase levels of reactive oxygen species, and upregulate p21. We used a lung cancer xenograft model to further demonstrate the therapeutic potential of systemic delivery of miR-200c to enhance radiosensitivity in lung cancer. Our findings suggest that the antitumor effects of miR-200c result partially from its regulation of the oxidative stress response; they further suggest that miR-200c, in combination with radiation, could represent a therapeutic strategy in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , MicroRNAs/metabolismo , Radiossensibilizantes/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Transplante de Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
5.
Anal Chem ; 86(3): 1534-42, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24397447

RESUMO

MRX34, a microRNA (miRNA)-based therapy for cancer, has recently entered clinical trials as the first clinical candidate in its class. It is a liposomal nanoparticle loaded with a synthetic mimic of the tumor suppressor miRNA miR-34a as the active pharmaceutical ingredient. To understand the pharmacokinetic properties of the drug and to rationalize an optimal dosing regimen in the clinic, a method is needed to quantitatively detect the miRNA mimic. Here, we report the development and qualification of a quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay in support of pharmacokinetic and toxicokinetic assessments in the nonhuman primate. Detection and quantification were performed on total ribonucleic acid (RNA) isolated from whole blood. The qualified range of the standard curve spans 6 orders of magnitude from 2.5 × 10(-7) to 2.5 × 10(-1) ng per reverse transcription (RT) reaction, corresponding to an estimated blood concentration from 6.2 × 10(-5) to 6.2 × 10(1) ng/mL. Our results demonstrate that endogenous as well as the exogenous miR-34a can be accurately and precisely quantified. The assay was used to establish the pharmacokinetic profile of MRX34, showing a favorable residence time and exposure of the miRNA mimic in whole blood from nonhuman primates.


Assuntos
Materiais Biomiméticos/análise , Macaca fascicularis/sangue , MicroRNAs/sangue , Animais , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/uso terapêutico , Calibragem , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Congelamento , Limite de Detecção , MicroRNAs/uso terapêutico
6.
Mol Ther ; 21(9): 1678-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836017

RESUMO

The tumor suppressor, microRNA-34 (miR-34), a transcriptional target of TP53, functions in a positive feedback loop to activate TP53. Although miR-34 can inhibit cancer cells carrying TP53 mutations, this feedback to TP53 may be a prerequisite for full miR-34 function and may restrict its therapeutic application to patients with intact TP53. To investigate the functional relationships between TP53 and miR-34, and that of other TP53-regulated miRNAs including miR-215/192, we have used a panel of isogenic cancer cell lines that differ only with respect to their endogenous TP53 status. miR-34-induced inhibition of cancer cell growth is the same in TP53-positive and TP53-negative cells. In contrast, miR-215/192 functions through TP53. In the absence of TP53, miR-34, but not miR-215/192, is sufficient to induce an upregulation of the cell cycle-dependent kinase inhibitor p21(CIP1/WAF1). We identify histone deacetylase 1 (HDAC1) as a direct target of miR-34 and demonstrate that repression of HDAC1 leads to an induction of p21(CIP1/WAF1) and mimics the miR-34 cellular phenotype. Depletion of p21(CIP1/WAF1) specifically interferes with the ability of miR-34 to inhibit cancer cell proliferation. The data suggest that miR-34 controls a tumor suppressor pathway previously reserved for TP53 and provides an attractive therapeutic strategy for cancer patients irrespective of TP53 status.


Assuntos
Pontos de Checagem do Ciclo Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Histona Desacetilase 1/genética , MicroRNAs/genética , MicroRNAs/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Repressão Enzimática , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Neoplasias/terapia , Proteína Supressora de Tumor p53/genética
7.
Nat Rev Cancer ; 5(12): 921-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16341083

RESUMO

There have long been indications of a role for PI3K (phosphatidylinositol 3-kinase) in cancer pathogenesis. Experimental data document a requirement for deregulation of both transcription and translation in PI3K-mediated oncogenic transformation. The recent discoveries of cancer-specific mutations in PIK3CA, the gene that encodes the catalytic subunit p110alpha of PI3K, have heightened the interest in the oncogenic potential of this lipid kinase and have made p110alpha an ideal drug target.


Assuntos
Neoplasias/enzimologia , Fosfatidilinositol 3-Quinases/genética , Domínio Catalítico , Fatores de Transcrição Forkhead/genética , Humanos , Mutação , Neoplasias/genética , Inibidores de Fosfoinositídeo-3 Quinase , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas/genética , Transcrição Gênica
8.
Mol Ther ; 19(6): 1116-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21427705

RESUMO

MicroRNAs (miRNAs) are emerging as potential cancer therapeutics, but effective delivery mechanisms to tumor sites are a roadblock to utility. Here we show that systemically delivered, synthetic miRNA mimics in complex with a novel neutral lipid emulsion are preferentially targeted to lung tumors and show therapeutic benefit in mouse models of lung cancer. Therapeutic delivery was demonstrated using mimics of the tumor suppressors, microRNA-34a (miR-34a) and let-7, both of which are often down regulated or lost in lung cancer. Systemic treatment of a Kras-activated autochthonous mouse model of non-small cell lung cancer (NSCLC) led to a significant decrease in tumor burden. Specifically, mice treated with miR-34a displayed a 60% reduction in tumor area compared to mice treated with a miRNA control. Similar results were obtained with the let-7 mimic. These findings provide direct evidence that synthetic miRNA mimics can be systemically delivered to the mammalian lung and support the promise of miRNAs as a future targeted therapy for lung cancer.


Assuntos
Emulsões/química , Vetores Genéticos/química , Lipídeos/química , Neoplasias Pulmonares/terapia , MicroRNAs/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , MicroRNAs/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Curr Top Microbiol Immunol ; 347: 79-104, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20582532

RESUMO

The catalytic and regulatory subunits of class I phosphoinositide 3-kinase (PI3K) have oncogenic potential. The catalytic subunit p110α and the regulatory subunit p85 undergo cancer-specific gain-of-function mutations that lead to enhanced enzymatic activity, ability to signal constitutively, and oncogenicity. The ß, γ, and δ isoforms of p110 are cell-transforming as overexpressed wild-type proteins. Class I PI3Ks have the unique ability to generate phosphoinositide 3,4,5 trisphosphate (PIP(3)). Class II and class III PI3Ks lack this ability. Genetic and cell biological evidence suggests that PIP(3) is essential for PI3K-mediated oncogenicity, explaining why class II and class III enzymes have not been linked to cancer. Mutational analysis reveals the existence of at least two distinct molecular mechanisms for the gain of function seen with cancer-specific mutations in p110α; one causing independence from upstream receptor tyrosine kinases, the other inducing independence from Ras. An essential component of the oncogenic signal that is initiated by PI3K is the TOR (target of rapamycin) kinase. TOR is an integrator of growth and of metabolic inputs. In complex with the raptor protein (TORC1), it controls cap-dependent translation, and this function is essential for PI3K-initiated oncogenesis.


Assuntos
Neoplasias/etiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Transformação Celular Neoplásica , Humanos , Isoenzimas/fisiologia , Mutação , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética
10.
Mol Ther ; 18(1): 181-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19738602

RESUMO

Recent reports have linked the expression of specific microRNAs (miRNAs) with tumorigenesis and metastasis. Here, we show that microRNA (miR)-16, which is expressed at lower levels in prostate cancer cells, affects the proliferation of human prostate cancer cell lines both in vitro and in vivo. Transient transfection with synthetic miR-16 significantly reduced cell proliferation of 22Rv1, Du145, PPC-1, and PC-3M-luc cells. A prostate cancer xenograft model revealed that atelocollagen could efficiently deliver synthetic miR-16 to tumor cells on bone tissues in mice when injected into tail veins. In the therapeutic bone metastasis model, injection of miR-16 with atelocollagen via tail vein significantly inhibited the growth of prostate tumors in bone. Cell model studies indicate that miR-16 likely suppresses prostate tumor growth by regulating the expression of genes such as CDK1 and CDK2 associated with cell-cycle control and cellular proliferation. There is a trend toward lower miR-16 expression in human prostate tumors versus normal prostate tissues. Thus, this study indicates the therapeutic potential of miRNA in an animal model of cancer metastasis with systemic miRNA injection and suggest that systemic delivery of miR-16 could be used to treat patients with advanced prostate cancer.


Assuntos
Proteínas de Ciclo Celular/fisiologia , MicroRNAs/síntese química , MicroRNAs/uso terapêutico , Neoplasias da Próstata/complicações , Neoplasias da Próstata/tratamento farmacológico , Idoso , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Humanos , Técnicas In Vitro , Masculino , Camundongos , MicroRNAs/administração & dosagem , Pessoa de Meia-Idade , Neoplasias da Próstata/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Mol Cell Biol ; 25(6): 2095-106, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743808

RESUMO

The multifunctional Y box-binding protein 1 (YB-1) is transcriptionally repressed by the oncogenic phosphoinositide 3-kinase (PI3K) pathway (with P3K as an oncogenic homolog of the catalytic subunit) and, when reexpressed with the retroviral vector RCAS, interferes with P3K- and Akt-induced transformation of chicken embryo fibroblasts. Retrovirally expressed YB-1 binds to the cap of mRNAs and inhibits cap-dependent and cap-independent translation. To determine the requirements for the inhibitory role of YB-1 in P3K-induced transformation, we conducted a mutational analysis, measuring YB-1-induced interference with transformation, subcellular localization, cap binding, mRNA binding, homodimerization, and inhibition of translation. The results show that (i) interference with transformation requires RNA binding and a C-terminal domain that is distinct from the cytoplasmic retention domain, (ii) interference with transformation is tightly correlated with inhibition of translation, and (iii) masking of mRNAs by YB-1 is not sufficient to block transformation or to inhibit translation. We identified a noncanonical nuclear localization signal (NLS) in the C-terminal half of YB-1. A mutant lacking the NLS retains its ability to interfere with transformation, indicating that a nuclear function is not required. These results suggest that YB-1 interferes with P3K-induced transformation by a specific inhibition of translation through its RNA-binding domain and a region in the C-terminal domain. Potential functions of the C-terminal region are discussed.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Transformação Celular Neoplásica/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/análise , Proteínas Estimuladoras de Ligação a CCAAT/genética , Núcleo Celular/química , Transformação Celular Neoplásica/genética , Embrião de Galinha , Cicloeximida/farmacologia , Citoplasma/química , Vetores Genéticos/genética , Imunoprecipitação , Dados de Sequência Molecular , Fatores de Transcrição NFI , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/fisiologia , Fosfatidilinositol 3-Quinases/genética , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/genética , Retroviridae/genética , Deleção de Sequência/genética , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Proteína 1 de Ligação a Y-Box
12.
Methods Mol Biol ; 1517: 115-126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27924478

RESUMO

Tumor suppressor miRNAs such as miR-34a inhibit tumor growth by simultaneously regulating the expression of multiple important oncogenes across multiple oncogenic pathways and, therefore, provide a strong rationale for developing therapeutic miRNA mimics in combination with other therapeutic cancer agents to augment drug sensitivity. Here, we describe the experimental approach for evaluating miRNA and drug combinations using the "fixed ratio" method in cultured non-small cell lung cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/genética , MicroRNAs/genética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo
13.
Lung Cancer ; 108: 96-102, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28625657

RESUMO

OBJECTIVES: EGFR tyrosine kinase inhibitors (TKIs) are widely used to treat NSCLC, primarily patients with activating mutations, with more limited response in wild-type disease. However, even with EGFR-mutated disease, many patients fail to respond, most who initially respond fail to respond completely, and almost all develop resistance and inevitably progress. New therapeutic options that improve these outcomes could provide substantial clinical benefit. We previously demonstrated strong synergistic effects between erlotinib and the tumor suppressor microRNA miR-34a, sensitizing NSCLC cells with primary resistance (EGFR wild-type) and restoring sensitivity in cells with acquired resistance. Here, we report results of further research combining miR-34a with newer generation EGFR-TKIs in similar experiments. MATERIALS AND METHODS: Human NSCLC cell lines with varying degrees of primary and acquired resistance to erlotinib were assessed for sensitivity to a broad set of combined doses of miR-34a mimic and afatinib, rociletinib or osimertinib. Multiple analytical approaches were used to characterize effects on cancer cell proliferation as additive, antagonistic or synergistic. RESULTS: Mimics of miR-34a synergized with afatinib, rociletinib or osimertinib in all EFGR-mutant cells tested. Best and consistently strong synergy was observed in cell models with acquired resistance. Synergy was also evident in most EGFR wild-type cells with miR-34a combined with rociletinib and osimertinib, but not with afatinib. The effects were observed across a broad range of dose levels and drug ratios, with maximal synergy at doses yielding high levels of inhibition beyond those possible to be induced by the single agents alone. CONCLUSION: Combined miR-34a and EGFR-TKIs synergistically sensitize both EGFR wild-type and mutant NSCLC cells, supporting clinical investigation of these combinations as a strategy to overcome both primary and acquired resistance to EGFR-TKIs in NSCLC, possibly with an improved therapeutic index.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Alelos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Humanos , Mutação
14.
J Natl Cancer Inst ; 108(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26577528

RESUMO

BACKGROUND: Although clinical studies have shown promise for targeting PD1/PDL1 signaling in non-small cell lung cancer (NSCLC), the regulation of PDL1 expression is poorly understood. Here, we show that PDL1 is regulated by p53 via miR-34. METHODS: p53 wild-type and p53-deficient cell lines (p53(-/-) and p53(+/+) HCT116, p53-inducible H1299, and p53-knockdown H460) were used to determine if p53 regulates PDL1 via miR-34. PDL1 and miR-34a expression were analyzed in samples from patients with NSCLC and mutated p53 vs wild-type p53 tumors from The Cancer Genome Atlas for Lung Adenocarcinoma (TCGA LUAD). We confirmed that PDL1 is a direct target of miR-34 with western blotting and luciferase assays and used a p53(R172HΔ)g/+K-ras(LA1/+) syngeneic mouse model (n = 12) to deliver miR-34a-loaded liposomes (MRX34) plus radiotherapy (XRT) and assessed PDL1 expression and tumor-infiltrating lymphocytes (TILs). A two-sided t test was applied to compare the mean between different treatments. RESULTS: We found that p53 regulates PDL1 via miR-34, which directly binds to the PDL1 3' untranslated region in models of NSCLC (fold-change luciferase activity to control group, mean for miR-34a = 0.50, SD = 0.2, P < .001; mean for miR-34b = 0.52, SD = 0.2, P = .006; and mean for miR-34c = 0.59, SD = 0.14, and P = .006). Therapeutic delivery of MRX34, currently the subject of a phase I clinical trial, promoted TILs (mean of CD8 expression percentage of control group = 22.5%, SD = 1.9%; mean of CD8 expression percentage of MRX34 = 30.1%, SD = 3.7%, P = .016, n = 4) and reduced CD8(+)PD1(+) cells in vivo (mean of CD8/PD1 expression percentage of control group = 40.2%, SD = 6.2%; mean of CD8/PD1 expression percentage of MRX34 = 20.3%, SD = 5.1%, P = .001, n = 4). Further, MRX34 plus XRT increased CD8(+) cell numbers more than either therapy alone (mean of CD8 expression percentage of MRX34 plus XRT to control group = 44.2%, SD = 8.7%, P = .004, n = 4). Finally, miR-34a delivery reduced the numbers of radiation-induced macrophages (mean of F4-80 expression percentage of control group = 52.4%, SD = 1.7%; mean of F4-80 expression percentage of MRX34 = 40.1%, SD = 3.5%, P = .008, n = 4) and T-regulatory cells. CONCLUSIONS: We identified a novel mechanism by which tumor immune evasion is regulated by p53/miR-34/PDL1 axis. Our results suggest that delivery of miRNAs with standard therapies, such as XRT, may represent a novel therapeutic approach for lung cancer.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Antígenos CD8/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Camundongos , MicroRNAs/administração & dosagem , Neoplasias Experimentais/metabolismo
15.
Oncogene ; 23(18): 3145-50, 2004 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-15094764

RESUMO

The induction and maintenance of oncogenic transformation requires interference with the controls that regulate translation and transcription. The PI 3-kinase pathway, which shows gain of function in numerous and diverse human cancers, generates signals that have a positive effect on the initiation of protein synthesis. Here we review the components of the PI 3-kinase signaling pathway and the mRNA-binding protein YB-1, exploring their roles in protein synthesis and oncogenic cell transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases , Animais , Humanos , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Supressoras de Tumor/fisiologia
16.
Methods Mol Biol ; 1317: 125-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26072405

RESUMO

MRX34 has recently entered the clinic as the first therapeutic product based on a microRNA (miRNA) mimic. In order to measure drug concentrations in vivo, a quantitation method is needed that exhibits high precision, accuracy, and robustness. While most clinical applications for oligonucleotide therapeutics involve methods based on hybridization assays and liquid chromatography-tandem mass spectrometry, quantitative PCR (qPCR) is a less well-described approach. Here, we present an RT, qPCR, and analysis method to determine the tissue biodistribution of endogenous as well as a therapeutic, exogenous miRNA mimic therapeutic. Assay performance is demonstrated on multiple tissues from nonhuman primates dosed with MRX34.


Assuntos
MicroRNAs/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Lipossomos/metabolismo , MicroRNAs/genética , Primatas/genética , Estatística como Assunto , Distribuição Tecidual
17.
Mol Ther Nucleic Acids ; 4: e270, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670277

RESUMO

MiR-34a, an important tumor-suppressing microRNA, is downregulated in several types of cancer; loss of its expression has been linked with unfavorable clinical outcomes in non-small-cell lung cancer (NSCLC), among others. MiR-34a represses several key oncogenic proteins, and a synthetic mimic of miR-34a is currently being tested in a cancer trial. However, little is known about the potential role of miR-34a in regulating DNA damage response and repair. Here, we demonstrate that miR-34a directly binds to the 3' untranslated region of RAD51 and regulates homologous recombination, inhibiting double-strand-break repair in NSCLC cells. We further demonstrate the therapeutic potential of miR-34a delivery in combination with radiotherapy in mouse models of lung cancer. Collectively, our results suggest that administration of miR-34a in combination with radiotherapy may represent a novel strategy for treating NSCLC.

18.
PLoS One ; 9(2): e89105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551227

RESUMO

Tyrosine kinase inhibitors directed against epidermal growth factor receptor (EGFR-TKI), such as erlotinib, are effective in a limited fraction of non-small cell lung cancer (NSCLC). However, the majority of NSCLC and other cancer types remain resistant. Therapeutic miRNA mimics modeled after endogenous tumor suppressor miRNAs inhibit tumor growth by repressing multiple oncogenes at once and, therefore, may be used to augment drug sensitivity. Here, we investigated the relationship of miR-34a and erlotinib and determined the therapeutic activity of the combination in NSCLC cells with primary and acquired erlotinib resistance. The drug combination was also tested in a panel of hepatocellular carcinoma cells (HCC), a cancer type known to be refractory to erlotinib. Using multiple analytical approaches, drug-induced inhibition of cancer cell proliferation was determined to reveal additive, antagonistic or synergistic effects. Our data show a strong synergistic interaction between erlotinib and miR-34a mimics in all cancer cells tested. Synergy was observed across a range of different dose levels and drug ratios, reducing IC50 dose requirements for erlotinib and miR-34a by up to 46-fold and 13-fold, respectively. Maximal synergy was detected at dosages that provide a high level of cancer cell inhibition beyond the one that is induced by the single agents alone and, thus, is of clinical relevance. The data suggest that a majority of NSCLC and other cancers previously not suited for erlotinib may prove sensitive to the drug when used in combination with a miR-34a-based therapy.


Assuntos
MicroRNAs/metabolismo , Quinazolinas/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cloridrato de Erlotinib , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinazolinas/uso terapêutico
19.
Front Genet ; 3: 120, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22783274

RESUMO

MicroRNA-34 (miR-34) is a master regulator of tumor suppression. It is downregulated in numerous cancers and inhibits malignant growth by repressing genes involved in various oncogenic signaling pathways. Consequently, miR-34 antagonizes processes that are necessary for basic cancer cell viability as well as cancer stemness, metastasis, and chemoresistance. This broad anti-oncogenic activity holds the prospect of creating a new remedy that is effective against tumor heterogeneity. This review focuses on the molecular mechanisms of miR-34-mediated tumor suppression, pharmacologies in animal models of cancer, and a status update of a miR-34 therapy that may be among the first miRNA mimics to reach the clinic.

20.
Nat Med ; 17(2): 211-5, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240262

RESUMO

Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.


Assuntos
Receptores de Hialuronatos/efeitos dos fármacos , MicroRNAs/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa