Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(7): e2210044120, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745807

RESUMO

Mineral stabilization of soil organic matter is an important regulator of the global carbon (C) cycle. However, the vulnerability of mineral-stabilized organic matter (OM) to climate change is currently unknown. We examined soil profiles from 34 sites across the conterminous USA to investigate how the abundance and persistence of mineral-associated organic C varied with climate at the continental scale. Using a novel combination of radiocarbon and molecular composition measurements, we show that the relationship between the abundance and persistence of mineral-associated organic matter (MAOM) appears to be driven by moisture availability. In wetter climates where precipitation exceeds evapotranspiration, excess moisture leads to deeper and more prolonged periods of wetness, creating conditions which favor greater root abundance and also allow for greater diffusion and interaction of inputs with MAOM. In these humid soils, mineral-associated soil organic C concentration and persistence are strongly linked, whereas this relationship is absent in drier climates. In arid soils, root abundance is lower, and interaction of inputs with mineral surfaces is limited by shallower and briefer periods of moisture, resulting in a disconnect between concentration and persistence. Data suggest a tipping point in the cycling of mineral-associated C at a climate threshold where precipitation equals evaporation. As climate patterns shift, our findings emphasize that divergence in the mechanisms of OM persistence associated with historical climate legacies need to be considered in process-based models.

2.
Environ Microbiol ; 23(11): 6405-6419, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34347364

RESUMO

Despite the abundance of studies demonstrating the effects of drought on soil microbial communities, the role of land use legacies in mediating these drought effects is unclear. To assess historical land use influences on microbial drought responses, we conducted a drought-rewetting experiment in soils from two adjacent and currently forested watersheds with distinct land use histories: an undisturbed 'reference' site and a 'disturbed' site that was clear-cut and converted to agriculture ~60 years prior. We incubated intact soil cores at either constant moisture or under a drought-rewet treatment and characterized bacterial and fungal communities using amplicon sequencing throughout the experiment. Bacterial alpha diversity decreased following drought-rewetting while fungal diversity increased. Bacterial beta diversity also changed markedly following drought-rewetting, especially in historically disturbed soils, while fungal beta diversity exhibited little response. Additionally, bacterial beta diversity in disturbed soils recovered less from drought-rewetting compared with reference soils. Disturbed soil communities also exhibited notable reductions in nitrifying taxa, increases in putative r-selected bacteria, and reductions in network connectivity following drought-rewetting. Overall, our study reveals historical land use to be important in mediating responses of soil bacterial communities to drought, which will influence the ecosystem-scale trajectories of these environments under ongoing and future climate change.


Assuntos
Microbiota , Solo , Secas , Florestas , Microbiota/genética , Microbiologia do Solo
3.
Environ Sci Technol ; 55(9): 5731-5741, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819033

RESUMO

Increases in the salt concentration of freshwater result in detrimental impacts on water quality and ecosystem biodiversity. Biodiversity effects include freshwater microbiota, as increasing salinity can induce shifts in the structure of native freshwater bacterial communities, which could disturb their role in mediating basal ecosystem services. Moreover, salinity affects the wave breaking and bubble-bursting mechanisms via which water-to-air dispersal of bacteria occurs. Given this dual effect of freshwater salinity on waterborne bacterial communities and their aerosolization mechanism, further effects on aerosolized bacterial diversity and abundance are anticipated. Cumulative salt additions in the freshwater-euhaline continuum (0-35 g/kg) were administered to a freshwater sample aerosolized inside a breaking wave analogue tank. Waterborne and corresponding airborne bacteria were sampled at each salinity treatment and later analyzed for diversity and abundance. Results demonstrated that the airborne bacterial community was significantly different (PERMANOVA; F1,22 = 155.1, r2 = 0.38, p < 0.001) from the waterborne community. The relative aerosolization factor (r-AF), defined as the air-to-water relative abundance ratio, revealed that different bacterial families exhibited either an enhanced (r-AF ≫ 1), neutral (r-AF ∼ 1), or diminished (r-AF ≪ 1) transfer to the aerosol phase throughout the salinization gradient. Going from freshwater to euhaline conditions, aerosolized bacterial abundance exhibited a nonmonotonic response with a maximum peak at lower oligohaline conditions (0.5-1 g/kg), a decline at higher oligohaline conditions (5 g/kg), and a moderate increase at polyhaline-euhaline conditions (15-35 g/kg). Our results demonstrate that increases in freshwater salinity are likely to influence the abundance and diversity of aerosolized bacteria. These shifts in aerosolized bacterial communities might have broader implications on public health by increasing exposure to airborne pathogens via inhalation. Impacts on regional climate, related to changes in biological ice-nucleating particles (INPs) emission from freshwater, are also expected.


Assuntos
Microbiota , Salinidade , Bactérias , Biodiversidade , Água Doce , Humanos
4.
Ecol Lett ; 22(12): 2067-2076, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31595680

RESUMO

Microbial communities drive soil ecosystem function but are also susceptible to environmental disturbances. We investigated whether exposure to manure sourced from cattle either administered or not administered antibiotics affected microbially mediated terrestrial ecosystem function. We quantified changes in microbial community composition via amplicon sequencing, and terrestrial elemental cycling via a stable isotope pulse-chase. Exposure to manure from antibiotic-treated cattle caused: (i) changes in microbial community structure; and (ii) alterations in elemental cycling throughout the terrestrial system. This exposure caused changes in fungal : bacterial ratios, as well as changes in bacterial community structure. Additionally, exposure to manure from cattle treated with pirlimycin resulted in an approximate two-fold increase in ecosystem respiration of recently fixed-carbon, and a greater proportion of recently added nitrogen in plant and soil pools compared to the control manure. Manure from antibiotic-treated cattle therefore affects terrestrial ecosystem function via the soil microbiome, causing decreased ecosystem carbon use efficiency, and altered nitrogen cycling.


Assuntos
Ecossistema , Esterco , Animais , Antibacterianos , Carbono , Bovinos , Gado , Nitrogênio , Solo , Microbiologia do Solo
5.
Environ Microbiol ; 21(8): 2905-2920, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31087743

RESUMO

Amphibian population declines caused by the fungus Batrachochytrium dendrobatidis (Bd) have prompted studies on the bacterial community that resides on amphibian skin. However, studies addressing the fungal portion of these symbiont communities have lagged behind. Using ITS1 amplicon sequencing, we examined the fungal portion of the skin microbiome of temperate and tropical amphibian species currently coexisting with Bd in nature. We assessed cooccurrence patterns between bacterial and fungal OTUs using a subset of samples for which bacterial 16S rRNA gene amplicon data were also available. We determined that fungal communities were dominated by members of the phyla Ascomycota and Basidiomycota, and also by Chytridiomycota in the most aquatic amphibian species. Alpha diversity of the fungal communities differed across host species, and fungal community structure differed across species and regions. However, we did not find a correlation between fungal diversity/community structure and Bd infection, though we did identify significant correlations between Bd and specific OTUs. Moreover, positive bacterial-fungal cooccurrences suggest that positive interactions between these organisms occur in the skin microbiome. Understanding the ecology of amphibian skin fungi, and their interactions with bacteria will complement our knowledge of the factors influencing community assembly and the overall function of these symbiont communities.


Assuntos
Anuros/microbiologia , Quitridiomicetos , Micobioma , Micoses/veterinária , Animais , Quitridiomicetos/genética , Fungos/classificação , Fungos/isolamento & purificação , Especificidade de Hospedeiro , Microbiota , Tipagem Molecular , Micoses/microbiologia , Pele/microbiologia , Simbiose
6.
Environ Sci Technol ; 52(9): 5358-5366, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29634901

RESUMO

Bioretention cells (BRCs) are effective tools for treating urban stormwater, but nitrogen removal by these systems is highly variable. Improvements in nitrogen removal are hampered by a lack of data directly quantifying the abundance or activity of denitrifying microorganisms in BRCs and how they are controlled by original BRC design characteristics. We analyzed denitrifiers in twenty-three BRCs of different designs across three mid-Atlantic states (MD, VA, and NC) by quantifying two bacterial denitrification genes ( nirK and nosZ) and potential enzymatic denitrification rates within the soil medium. Overall, we found that BRC design factors, rather than local environmental variables, had the greatest effects on variation in denitrifier abundance and activity. Specifically, denitrifying populations and denitrification potential increased with organic carbon and inorganic nitrogen concentrations in the soil media and decreased in BRCs planted with grass compared to other types of vegetation. Furthermore, the top layers of BRCs consistently contained greater concentrations and activity of denitrifying bacteria than bottom layers, despite longer periods of saturation and the presence of permanently saturated zones designed to promote denitrification at lower depths. These findings suggest that there is still considerable potential for design improvements when constructing BRCs that could increase denitrification and mitigate nitrogen export to receiving waters.


Assuntos
Desnitrificação , Microbiologia do Solo , Bactérias , Nitrogênio , Solo
7.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356447

RESUMO

Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the ß-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function.


Assuntos
Resistência Microbiana a Medicamentos , Esterco , Microbiologia do Solo , Animais , Antibacterianos , Bactérias , Bovinos , Fungos , Solo
8.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476769

RESUMO

Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, ß-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping ß-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial ß-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities.IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Ecossistema , Florestas , Fungos/classificação , Fungos/genética , Filogenia , Plantas/microbiologia , Solo/química
9.
Environ Sci Technol ; 51(21): 12672-12682, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28954508

RESUMO

Microbial desalination cells (MDCs) are an emerging concept for simultaneous water/wastewater treatment and energy recovery. The key to developing MDCs is to understand fundamental problems, such as the effects of salinity on system performance and the role of microbial community and functional dynamics. Herein, a tubular MDC was operated under a wide range of salt concentrations (0.05-4 M), and the salinity effects were comprehensively examined. The MDC generated higher current with higher salt concentrations in the desalination chamber. When fed with 4 M NaCl, the MDC achieve a current density of 300 A m-3 (anode volume), which was one of the highest among bioelectrochemical system studies. Community analysis and electrochemical measurements suggested that electrochemically active bacteria Pseudomonas and Acinetobacter transferred electrons extracellularly via electron shuttles, and the consequent ion migration led to high anode salinities and conductivity that favored their dominance. Predictive functional dynamics and Bayesian networks implied that the taxa putatively not capable of extracellular electron transfer (e.g., Bacteroidales and Clostridiales) might indirectly contribute to bioelectrochemical desalination. By integrating the Bayesian network with logistic regression, current production was successfully predicted from taxonomic data. This study has demonstrated uncompromised system performance under high salinity and thus has highlighted the potential of MDCs as an energy-efficient technology to address water-energy challenges. The statistical modeling approach developed in this study represents a significant step toward understating microbial communities and predicting system performance in engineered biological systems.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Teorema de Bayes , Eletricidade , Eletrodos , Salinidade
10.
J Water Health ; 15(4): 580-590, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28771155

RESUMO

Poor sanitation in rural infrastructure is often associated with high levels of fecal contamination in adjacent surface waters, which presents a community health risk. Although microbial source tracking techniques have been widely applied to identify primary remediation needs in urban and/or recreational waters, use of human-specific markers has been more limited in rural watersheds. This study quantified the human source tracking marker Bacteroides-HF183, along with more general fecal indicators (i.e. culturable Escherichia coli and a molecular Enterococcus marker), in two Appalachian streams above and below known discharges of untreated household waste. Although E. coli and Enterococcus were consistently recovered in samples collected from both streams, Bacteroides-HF183 was only detected sporadically in one stream. Multiple linear regression analysis demonstrated a positive correlation between the concentration of E. coli and the proximity and number of known waste discharge points upstream; this correlation was not significant with respect to Bacteroides-HF183, likely due to the low number of quantifiable samples. These findings suggest that, while the application of more advanced source targeting strategies can be useful in confirming the influence of substandard sanitation on surface waters to justify infrastructure improvements, they may be of limited use without concurrent traditional monitoring targets and on-the-ground sanitation surveys.


Assuntos
Bacteroides/isolamento & purificação , Enterococcus/isolamento & purificação , Monitoramento Ambiental , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Rios/microbiologia , Esgotos/microbiologia , Contagem de Colônia Microbiana , Reação em Cadeia da Polimerase , Rios/química , Esgotos/análise , Virginia , Qualidade da Água
11.
Appl Environ Microbiol ; 82(18): 5653-60, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422829

RESUMO

UNLABELLED: Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE: Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health.


Assuntos
Biota , Enterococcus faecium/isolamento & purificação , Sedimentos Geológicos/microbiologia , Esgotos , Enterococos Resistentes à Vancomicina/isolamento & purificação , Microbiologia da Água , Poluição da Água , Carga Bacteriana , Proteínas de Bactérias/genética , Estruturas Bacterianas , Carbono-Oxigênio Ligases/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Enterococcus faecium/classificação , Enterococcus faecium/genética , Humanos , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Tempo , Estados Unidos , Enterococos Resistentes à Vancomicina/classificação , Enterococos Resistentes à Vancomicina/genética
12.
J Environ Qual ; 44(6): 1903-10, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26641342

RESUMO

Ammonia (NH) emissions from animal manures can cause air and water quality problems. Poultry litter treatment (PLT, sodium bisulfate; Jones-Hamilton Co.) is an acidic amendment that is applied to litter in poultry houses to decrease NH emissions, but currently it can only be applied once before birds are placed in the houses. This project analyzed the effect of multiple PLT applications on litter properties and NH release. Volatility chambers were used to compare multiple, single, and no application of PLT to poultry litter, all with and without fresh manure applications. A field component consisted of two commercial broiler houses: one had a single, preflock PLT application, while the other received PLT reapplications during the flock using an overhead application system. In the volatility chambers, single and reapplied PLT caused greater litter moisture and lower litter pH and , relative to no PLT. After 14 d, NH released from litter treated with reapplied PLT was significantly less than litter with both single and no applications. Furthermore, total N in litter was greatest in litter treated with reapplied PLT, increasing its fertilizer value. In the commercial poultry houses, PLT reapplication led to a temporary decrease in litter pH and , but these effects did not last because of continued bird excretion. Although one preflock PLT application is currently used as a successful strategy to control NH during early flock growth, repeat PLT application using the overhead reapplication system was not successful because of problems with the reapplication system and litter moisture concerns.

13.
J Environ Qual ; 43(6): 2034-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602220

RESUMO

High levels of fecal indicator bacteria (FIB) are the leading cause of surface water quality impairments in the United States. Watershed-scale models are commonly used to identify relative contributions of watershed sources and to evaluate the effectiveness of remediation strategies. However, most existing models simplify FIB transport behavior as equivalent to that of dissolved-phase contaminants, ignoring the impacts of sediment on the fate and transport of FIB. Implementation of sediment-related processes within existing models is limited by minimal available monitoring data on sediment FIB concentrations for model development, calibration, and validation purposes. The purpose of the present study is to evaluate FIB levels in the streambed sediments as compared to those in the water column and to identify environmental variables that influence water and underlying sediment FIB levels. Concentrations of and enterococci in the water column and sediments of an urban stream were monitored weekly for 1 yr and correlated with a variety of potential hydrometeorological and physicochemical variables. Increased FIB concentrations in both the water column and sediments were most strongly correlated with increased antecedent 24-h rainfall, increased stream water temperature, decreased dissolved oxygen, and decreased specific conductivity. These observations will support future efforts to incorporate sediment-related processes in existing models through the identification of key FIB relationships with other model inputs, and the provision of sediment FIB concentrations for direct model calibration. In addition, identified key variables can be used in quick evaluation of the effectiveness of potential remediation strategies.

14.
J Environ Qual ; 43(3): 1013-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25602830

RESUMO

Although many studies have measured denitrification in stream sediments, few have utilized these data with local water column and sediment measurements to develop a predictive model for NO uptake. In this study, sediment denitrification was measured from cores in five streams under various land uses in south-central Minnesota using denitrification enzyme activity (DEA) assays and amplification of the gene via real-time, quantitative polymerase chain reaction. Hydraulic and environmental variables were measured in the vicinity of the sediment cores to evaluate the influence of fluid flow and chemical variables on denitrification activity. Potential denitrification rates measured using DEA assays ranged from 0.02 to 10.1 mg N m h, and the abundance of the denitrifier gene was positively correlated with these measurements ( = 0.79, < 0.001) for most of the streams studied. A predictive model to determine NO uptake via denitrification was derived, implementing dimensional analysis of variables that mediate denitrification in sand-bed streams. The proposed model explained 75% of the variability in DEA rates. The results of this study show that denitrification is most dependent on the distribution of sediment organic matter, interstitial pore space, and stream hydraulic characteristics, including shear velocity at the sediment-water interface and stream depth.

15.
Environ Sci Pollut Res Int ; 31(18): 27259-27272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507165

RESUMO

Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.


Assuntos
Antibacterianos , Esterco , Microbiologia do Solo , Solo , Animais , Bovinos , Antibacterianos/farmacologia , Solo/química , Microbiota/efeitos dos fármacos
16.
Appl Environ Microbiol ; 79(9): 3067-75, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23455345

RESUMO

In 2012, the U.S. EPA suggested that coastal and Great Lakes states adopt enterococci as an alternative indicator for the monitoring of recreational water quality. Limited information, however, is available about the presence and persistence of enterococci in Lake Superior. In this study, the density, species composition, and persistence of enterococci in sand, sediment, water, and soil samples were examined at two sites in a Lake Superior watershed from May to September over a 2-year period. The genetic diversity of Enterococcus faecalis isolates collected from environmental samples was also studied by using the horizontal, fluorophore-enhanced repetitive PCR DNA fingerprinting technique. Results obtained by most-probable-number analyses indicated that enterococci were present in 149 (94%) of 159 samples and their densities were generally higher in the summer than in the other months examined. The Enterococcus species composition displayed spatial and temporal changes, with the dominant species being E. hirae, E. faecalis, E. faecium, E. mundtii, and E. casseliflavus. DNA fingerprint analyses indicated that the E. faecalis population in the watershed was genetically diverse and changed spatially and temporally. Moreover, some DNA fingerprints reoccurred over multiple sampling events. Taken together, these results suggest that some enterococci are able to persist and grow in the Lake Superior watershed, especially in soil, for a prolonged time after being introduced.


Assuntos
Enterococcus/isolamento & purificação , Variação Genética , Microbiologia do Solo , Microbiologia da Água , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/genética , Enterococcus/classificação , Enterococcus/genética , Enterococcus/crescimento & desenvolvimento , Enterococcus faecalis/classificação , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/isolamento & purificação , Monitoramento Ambiental , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Minnesota , Reação em Cadeia da Polimerase , Solo
17.
Microorganisms ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838217

RESUMO

Young turkeys are vulnerable to undifferentiated gastrointestinal distress, including "irritable and crabby syndrome" (ICS), which compromises flock performance and is typically treated with a combination of penicillin and gentamicin (P/G). However, the effects of ICS and P/G treatment on Campylobacter remain poorly understood. We investigated the impact of ICS and P/G treatment on Campylobacter levels and diversity in four flocks from three turkey farms. Cecum and jejunum samples were analyzed weekly from day of hatch to week 4-5. All four flocks became colonized with multidrug resistant (MDR) Campylobacter jejuni and C. coli by week 2-3, and two developed ICS. ICS and P/G treatment did not significantly impact total Campylobacter levels or strain genotypes but impacted species and antimicrobial resistance (AMR) profiles. One flock was raised under antibiotic-free (ABF) conditions while another flock at the same farm was raised conventionally. The ABF flock did not develop ICS while its counterpart did. However, Campylobacter strains, AMR profiles and sequence types were generally shared between these two flocks. Our findings suggest that ICS and P/G treatment impacted Campylobacter population dynamics in commercial young turkey flocks, and that ABF flocks may become readily colonized by MDR strains from non-ABF flocks at the same farm.

18.
Sci Total Environ ; 840: 156690, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35714745

RESUMO

Anthropogenic freshwater salinization is an emerging and widespread water quality stressor that increases salt concentrations of freshwater, where specific upland land-uses produce distinct ionic profiles. In-situ studies find salinization in disturbed landscapes is correlated with declines in stream bacterial diversity, but cannot isolate the effects of salinization from multiple co-occurring stressors. By manipulating salt concentration and type in controlled microcosm studies, we identified direct and complex effects of freshwater salinization on bacterial diversity in the absence of other stressors common in field studies using chloride salts. Changes in both salt concentration and cation produced distinct bacterial communities. Bacterial richness, or the total number of amplicon sequence variants (ASVs) detected, increased at conductivities as low as 350 µS cm-1, which is opposite the observations from field studies. Richness remained elevated at conductivities as high as 1500 µS cm-1 in communities exposed to a mixture of Ca, Mg, and K chloride salts, but decreased in communities exposed to NaCl, revealing a classic subsidy-stress response. Exposure to different chloride salts at the same conductivity resulted in distinct bacterial community structure, further supporting that salt type modulates responses of bacterial communities to freshwater salinization. Community variability peaked at 125-350 µS cm-1 and was more similar at lower and upper conductivities suggesting possible shifts in deterministic vs. stochastic assembly mechanisms across freshwater salinity gradients. Based on these results, we hypothesize that modest freshwater salinization (125-350 µS cm-1) lessens hypo-osmotic stress, reducing the importance of salinity as an environmental filter at intermediate freshwater ranges but effects of higher salinities at the upper freshwater range differ based on salt type. Our results also support previous findings that ~300 µS cm-1 is a biological effect concentration and effective salt management strategies may need to consider variable effects of different salt types associated with land-use.


Assuntos
Rios , Salinidade , Bactérias , Cloretos/química , Água Doce/química , Rios/química , Sais , Cloreto de Sódio
19.
Environ Microbiol ; 13(4): 932-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21208357

RESUMO

Elevated concentrations of fecal indicator bacteria (FIB) in aquatic sediments and vegetation have prompted concern that environmental reservoirs of FIB disrupt the correlation between indicator organisms, pathogens and human health risks. FIB numbers, however, are typically normalized to volume of water or mass of substrate. Because these reservoirs tend to differ greatly in magnitude within and between water bodies, direct comparison between water column and benthic population sizes can be problematic. Normalization to a set volume of water or mass of substrate, e.g. cfu (100 ml)(-1) or cfu(100 g)(-1), can give a false picture of the relative contributions of various reservoirs to FIB numbers across the ecosystem, and of the potential for FIBs to trigger health advisories as they pass from one reservoir to another. Here, we normalized enterococci concentrations from water, sediment and submerged aquatic vegetation (SAV) to land surface area (m(2) ) to compare their relative importance in the entire system. SAV-associated enterococci comprised only 0-18% of the entire population, even though they displayed the highest concentrations of enterococci per unit mass. The largest proportion of the enterococci population was in the water column (4-77%) or sediments (20-95%), depending on the volume of each substrate available at a site and FIB concentrations within them. Models indicated that large shifts in the relative size of FIB populations in each substrate can result from changes in per cent SAV cover, water depth and depth of sediment colonization. It follows that high concentrations of FIB in sediments or SAV do not necessarily signify large environmental reservoirs of FIB that can affect the water column. Comprehensive analyses that include FIB measurements from water, SAV and sediment normalized to land surface area offer a more balanced perspective on total FIB numbers contained in various matrices of an aquatic system.


Assuntos
Ecossistema , Enterococcus/isolamento & purificação , Fezes/microbiologia , Sedimentos Geológicos/microbiologia , Microbiologia da Água , Monitoramento Ambiental/métodos , Florida , Água Doce/análise , Água Doce/microbiologia , Sedimentos Geológicos/química , Humanos , Modelos Biológicos , Água do Mar/análise , Água do Mar/microbiologia , Poluentes da Água/análise
20.
Appl Environ Microbiol ; 77(14): 5050-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21622792

RESUMO

Environmental Enterococcus spp. were compared by BOX-PCR genotyping and 16S rRNA gene sequencing to clarify the predictive relationship of BOX-PCR fingerprints to species designation. BOX-PCR and 16S rRNA gene relationships agreed for 77% of strains. BOX-PCR provided superior intraspecies discrimination but incorrectly identified some strains to the species level and divided some species into multiple groups.


Assuntos
Enterococcus/genética , Enterococcus/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Sequência de Bases , Impressões Digitais de DNA , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Genótipo , RNA Ribossômico/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa