Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 24(11): 2491-503, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23877879

RESUMO

The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer-ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical-chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability.


Assuntos
Materiais Biocompatíveis , Durapatita/síntese química , Poliuretanos/síntese química , Animais , Linhagem Celular , Durapatita/química , Humanos , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Poliuretanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Biomicrofluidics ; 10(4): 044101, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27478525

RESUMO

We present a sustainable fabrication method for cheap point-of-care microfluidic systems, employing hot embossing of natural shellac as a key feature of an energy-efficient fabrication method that exclusively uses renewable materials as consumables. Shellac is a low-cost renewable biomaterial that features medium hydrophilicity (e.g., a water contact angle of ca. 73°) and a high chemical stability with respect to common solvents such as cyclohexane or toluene, rendering it an interesting candidate for low-cost microfluidics and a competitor to well-known systems such as paper-based or polydimethylsiloxane-based microfluidics. Moreover, its high replication accuracy for small features down to 30 µm lateral feature size and its ability to form smooth surfaces (surface roughness Ra = 29 nm) at low embossing temperatures (glass transition temperature Tg = 42.2 °C) enable energy-efficient hot embossing of microfluidic structures. Proof-of-concept for the implementation of shellac hot embossing as a green fabrication method for microfluidic systems is demonstrated through the successful fabrication of a microfluidic test setup and the assessment of its resource consumption.

3.
J Magn Reson ; 208(1): 20-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21071246

RESUMO

We present for the first time a complete characterization of a micro-solenoid for high resolution MR imaging of mass- and volume-limited samples based on three-dimensional B(0), B(1) per unit current (B(1)(unit)) and SNR maps. The micro-solenoids are fabricated using a fully micro-electromechanical systems (MEMS) compatible process in conjunction with an automatic wire-bonder. We present 15 µm isotropic resolution 3D B(0) maps performed using the phase difference method. The resulting B(0) variation in the range of [-0.07 ppm to -0.157 ppm] around the coil center, compares favorably with the 0.5 ppm limit accepted for MR microscopy. 3D B(1)(unit) maps of 40 µm isotropic voxel size were acquired according to the extended multi flip angle (ExMFA) method. The results demonstrate that the characterized microcoil provides a high and uniform sensitivity distribution around its center (B(1)(unit) = 3.4 mT/A ± 3.86%) which is in agreement with the corresponding 1D theoretical data computed along the coil axis. The 3D SNR maps reveal a rather uniform signal distribution around the coil center with a mean value of 53.69 ± 19%, in good agreement with the analytical 1D data along coil axis in the axial slice. Finally, we prove the microcoil capabilities for MR microscopy by imaging Eremosphaera viridis cells with 18 µm isotropic resolution.


Assuntos
Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Sistemas Microeletromecânicos/instrumentação , Microscopia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa