Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cytotherapy ; 19(2): 235-249, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27887866

RESUMO

BACKGROUND AIMS: Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. METHODS: To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). RESULTS: Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γnull mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. CONCLUSIONS: Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais , Leucemia Linfocítica Crônica de Células B/terapia , Linfoma/terapia , Proteínas Recombinantes de Fusão/metabolismo , Animais , Antígenos CD19/imunologia , Linfócitos B/imunologia , Complexo CD3/genética , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica/genética , Epitopos/genética , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Leucemia Linfocítica Crônica de Células B/imunologia , Ativação Linfocitária/genética , Linfoma/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
2.
BMC Cancer ; 12: 411, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22985168

RESUMO

BACKGROUND: Chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphatic leukemia (Ph + ALL) are caused by the t(9;22), which fuses BCR to ABL resulting in deregulated ABL-tyrosine kinase activity. The constitutively activated BCR/ABL-kinase "escapes" the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. The ABL-kinase inhibitors (AKIs) Imatinib, Nilotinib or Dasatinib, which target the ATP-binding site, are effective in Ph + leukemia. Another molecular therapy approach targeting BCR/ABL restores allosteric inhibition. Given the fact that all AKIs fail to inhibit BCR/ABL harboring the 'gatekeeper' mutation T315I, we investigated the effects of AKIs in combination with the allosteric inhibitor GNF2 in Ph + leukemia. METHODS: The efficacy of this approach on the leukemogenic potential of BCR/ABL was studied in Ba/F3 cells, primary murine bone marrow cells, and untransformed Rat-1 fibroblasts expressing BCR/ABL or BCR/ABL-T315I as well as in patient-derived long-term cultures (PDLTC) from Ph + ALL-patients. RESULTS: Here, we show that GNF-2 increased the effects of AKIs on unmutated BCR/ABL. Interestingly, the combination of Dasatinib and GNF-2 overcame resistance of BCR/ABL-T315I in all models used in a synergistic manner. CONCLUSIONS: Our observations establish a new approach for the molecular targeting of BCR/ABL and its resistant mutants using a combination of AKIs and allosteric inhibitors.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Dasatinibe , Feminino , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Pirimidinas/farmacologia , Tiazóis/farmacologia
3.
BMC Pharmacol Toxicol ; 21(1): 70, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993794

RESUMO

BACKGROUND: Combined inhibition of phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) complexes may be an efficient treatment for acute leukemia. The primary objective of this phase I single center open label study was to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of the dual pan-class I PI3K and mTOR inhibitor BEZ235 in patients with advanced leukemia. METHODS: Herein patients > 18 years of age who had relapsed or showed refractory leukemia were treated with BEZ235 (orally at 300-400 mg BID (cohort - 1/1)) to assess safety, tolerability, preliminary efficacy and pharmacokinetic (PK). Adverse events data and serious adverse events were analyzed and haematological and clinical biochemistry toxicities were assessed from laboratory test parameters. Response was assessed for the first time at the end of cycle 1 (day 29) and after every subsequent cycle. Pharmacokinetic and pharmacodynamic analyses of BEZ235 were also included (BEZ235 plasma levels, phosphorylation of AKT, S6 and 4EBP1). On statistics this trial is a multiple ascending dose study in which a following variant of the 3 + 3 rule ("Rolling Six"), a minimum of 6 and a maximum of 12 patients was recruited for the dose escalation and another 5 were planned for the expansion phase. RESULTS: Twenty-four patients with ALL (n = 11) or AML (n = 12) or CML-BP (n = 1) were enrolled. All patients had failed one (n = 5) or more lines of therapy (n = 5) and 14 patients were in refractory / refractory relapse. No formal MTD was defined, stomatitis and gastrointestinal toxicity at 400 mg BID dose was considered incompatible with prolonged treatment. The RP2D of BEZ235 was defined as 300 mg BID. Four of 24 patients showed clinical benefit. Twenty-two of 24 patients discontinued because of progression, (median time to progression 27 days (4d-112d). There was no association between PK parameters and efficacy or tolerability. CONCLUSIONS: Combined inhibition of PI3K and mTOR inhibits a clinically meaningful driver pathway in a small subset of patients with ALL, with no benefit in patients with AML. TRIAL REGISTRATION: ClinicalTrials.gov , identifier NCT01756118. retrospectively registered 19th December 2012, https://clinicaltrials.gov/ct2/show/NCT01756118 .


Assuntos
Antineoplásicos/uso terapêutico , Imidazóis/uso terapêutico , Leucemia/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Quinolinas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Imidazóis/farmacocinética , Imidazóis/farmacologia , Leucemia/genética , Leucemia/metabolismo , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacocinética , Quinolinas/farmacologia , Recidiva , Proteínas Quinases S6 Ribossômicas/metabolismo , Fatores de Transcrição/genética , Resultado do Tratamento
4.
PLoS One ; 12(7): e0180401, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28753604

RESUMO

Treatment with tyrosine kinase inhibitors is the standard of care for Philadelphia chromosome positive leukemias. However the eradication of leukemia initiating cells remains a challenge. Circumstantial evidence suggests that the cytokine microenvironment may play a role in BCR-ABL mediated leukemogenesis and in imatinib resistance. Gene expression analyses of BCR-ABL positive ALL long-term cultured cells revealed strong reduction of SOCS mRNA expression after imatinib treatment, thereby demonstrating a strong inhibition of cytokine signaling. In this study we employed SOCS1-a strong inhibitor of cytokine signaling-as a tool to terminate external cytokine signals in BCR-ABL transformed cells in vitro and in vivo. In colony formation assays with primary bone marrow cells, expression of SOCS1 decreased colony numbers under pro-proliferative cytokines, while it conferred growth resistance to anti-proliferative cytokines. Importantly, co-expression of SOCS1 with BCR-ABL led to the development of a MPD phenotype with a prolonged disease latency compared to BCR-ABL alone in a murine bone marrow transplantation model. Interestingly, SOCS1 co-expression protected 20% of mice from MPD development. In summary, we conclude that under pro-proliferative cytokine stimulation at the onset of myeloproliferative diseases SOCS1 acts as a tumor suppressor, while under anti-proliferative conditions it exerts oncogenic function. Therefore SOCS1 can promote opposing functions depending on the cytokine environment.


Assuntos
Citocinas/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Transtornos Mieloproliferativos/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Animais , Medula Óssea/metabolismo , Transplante de Medula Óssea , Linhagem Celular , Feminino , Proteínas de Fusão bcr-abl/genética , Interleucina-3/metabolismo , Camundongos , Transtornos Mieloproliferativos/genética , Fosforilação , Fator de Transcrição STAT5/metabolismo , Baço/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética
5.
Leuk Res ; 40: 38-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26652578

RESUMO

PURPOSE: The cytokine thymic stromal lymphopoietin (TSLP) and its receptor TSLPR are involved in intercellular communication in the course of allergic inflammation and have recently been implicated in the development of various malignancies including B cell precursor acute lymphoblastic leukemia (BCP-ALL). We studied TSLPR expression, TSLP-induced signal transduction and its antibody-mediated inhibition in long-term cultures of primary cells derived from B-precursor ALL patients. METHODS: TSLPR expression was determined by flow cytometry and Western blot analysis, cell proliferation, signal transduction via the JAK/STAT pathway was analysed by Western blot detection of STAT tyrosine phosphorylation and by measuring TSLP-dependent activation of a STAT-specific reporter gene construct. For inhibition studies a recently introduced antagonistic antibody to the TSLPRα-subunit was used. RESULTS: TSLPR surface expression was observed in leukemic lymphoblasts from two out of ten patients with BCP-ALL. Upon TSLP stimulation, the cells with the highest TSLPR expression level showed enhanced proliferation and JAK/STAT-mediated gene regulation in a dose-dependent manner. By employment of an inhibitory antibody to the TSLPR, both TSLP-triggered cell proliferation and STAT transcription factor activation were specifically inhibited. CONCLUSIONS: These results suggest that blockade of the TSLPR might be a therapeutic option for a subset of BCP-ALL patients.


Assuntos
Proliferação de Células/fisiologia , Citocinas/fisiologia , Leucemia de Células B/patologia , Receptores de Citocinas/antagonistas & inibidores , Transdução de Sinais , Humanos , Leucemia de Células B/metabolismo , Linfopoietina do Estroma do Timo
6.
PLoS One ; 8(11): e80070, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244612

RESUMO

PURPOSE: Aberrant PI3K/AKT/mTOR signaling has been linked to oncogenesis and therapy resistance in various malignancies including leukemias. In Philadelphia chromosome (Ph) positive leukemias, activation of PI3K by dysregulated BCR-ABL tyrosine kinase (TK) contributes to the pathogenesis and development of resistance to ABL-TK inhibitors (TKI). The PI3K pathway thus is an attractive therapeutic target in BCR-ABL positive leukemias, but its role in BCR-ABL negative ALL is conjectural. Moreover, the functional contribution of individual components of the PI3K pathway in ALL has not been established. EXPERIMENTAL DESIGN: We compared the activity of the ATP-competitive pan-PI3K inhibitor NVP-BKM120, the allosteric mTORC1 inhibitor RAD001, the ATP-competitive dual PI3K/mTORC1/C2 inhibitors NVP-BEZ235 and NVP-BGT226 and the combined mTORC1 and mTORC2 inhibitors Torin 1, PP242 and KU-0063794 using long-term cultures of ALL cells (ALL-LTC) from patients with B-precursor ALL that expressed the BCR-ABL or TEL-ABL oncoproteins or were BCR-ABL negative. RESULTS: Dual PI3K/mTOR inhibitors profoundly inhibited growth and survival of ALL cells irrespective of their genetic subtype and their responsiveness to ABL-TKI. Combined suppression of PI3K, mTORC1 and mTORC2 displayed greater antileukemic activity than selective inhibitors of PI3K, mTORC1 or mTORC1 and mTORC2. CONCLUSIONS: Inhibition of the PI3K/mTOR pathway is a promising therapeutic approach in patients with ALL. Greater antileukemic activity of dual PI3K/mTORC1/C2 inhibitors appears to be due to the redundant function of PI3K and mTOR. Clinical trials examining dual PI3K/mTORC1/C2 inhibitors in patients with B-precursor ALL are warranted, and should not be restricted to particular genetic subtypes.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Inibidores de Fosfoinositídeo-3 Quinase , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Aminopiridinas/farmacologia , Sinergismo Farmacológico , Everolimo , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Imidazóis/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Morfolinas/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Naftiridinas/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Biochem Biophys Res Commun ; 349(4): 1329-38, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16982033

RESUMO

The p53-inducible and death domain-containing PIDD/LRDD protein has been described as an adaptor protein, which forms large protein complexes with RAIDD, another death domain-containing protein, leading to recruitment, and activation of the initiator caspase-2, and p53-mediated apoptosis. Here, we describe in further detail the proteolytic processing of PIDD/LRDD that occurs in healthy cells before induction of apoptosis. We could demonstrate that the C-terminal fragment containing the PIDD death domain shuttles into the nucleoli. This translocation is mediated by or leads to the interaction of the PIDD death domain with nucleolin, a protein important for rRNA processing within nucleoli and possibly involved in the DNA damage response. Ectopically expressed LRDD and endogenous nucleolin co-localized within the nucleoli, and overexpression of both full-length LRDD and the LRDD death domain sensitized cells for UV-induced apoptosis. When expressed alone, the PIDD/LRDD death domain tended to form large filamentous structures resembling so-called death filaments. The functional consequences of the identified PIDD/nucleolin interaction remain to be elucidated, but may be related to a recently discovered new role for PIDD in the activation of NF-kappaB upon genotoxic stress.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Rim/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Linhagem Celular , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Humanos , Líquido Intracelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico/fisiologia , Nucleolina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa