Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO Rep ; 23(10): e54605, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35979738

RESUMO

Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post-Golgi secretory pathway. Using in situ subcellular live imaging, we show that post-Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6-dynein-LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.


Assuntos
Dineínas , Proteínas rab de Ligação ao GTP , Dineínas/genética , Dineínas/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
J Cell Sci ; 126(Pt 15): 3259-62, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23908378

RESUMO

Located in the 16th century Wiston House in West Sussex, UK, the 'Building a Centrosome' Workshop was organised by The Company of Biologists and chaired by Fanni Gergely and David Glover (University of Cambridge). Held in March 2013, the Workshop gathered together many of the leaders in the field of centrosome biology, as well as postdocs and students who were given the opportunity to meet and interact with many of the scientists who inspired their early careers. The diverse range of speakers provided a multi-disciplinary forum for the exchange of ideas, and gave fresh impetus to tackling outstanding questions related to centrosome biology. Here, we provide an overview of the meeting and highlight the main themes that were discussed.


Assuntos
Centrossomo/fisiologia , Animais , Humanos
3.
Nat Cell Biol ; 26(5): 698-709, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548890

RESUMO

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.


Assuntos
Linhagem da Célula , Neocórtex , Células-Tronco Neurais , Neurogênese , Organoides , Humanos , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/metabolismo , Organoides/citologia , Organoides/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Divisão Celular , Proliferação de Células
4.
Nat Cell Biol ; 26(5): 710-718, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714853

RESUMO

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.


Assuntos
Linhagem da Célula , Células-Tronco Neurais , Organoides , Organoides/citologia , Organoides/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Células Clonais , Neurogênese/genética , Código de Barras de DNA Taxonômico , Animais
5.
Curr Opin Neurobiol ; 80: 102709, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003105

RESUMO

A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans. We highlight how the centrosomal and acentrosomal microtubule networks are organized during interphase to support polarized transport and proper attachment of the apical and basal processes. We describe the molecular mechanism for interkinetic nuclear migration (INM), a microtubule-dependent oscillation of the nucleus. Finally, we describe how the mitotic spindle is built to ensure proper chromosome segregation, with a strong focus on factors mutated in microcephaly.


Assuntos
Microtúbulos , Neocórtex , Humanos , Fuso Acromático , Células-Tronco , Núcleo Celular
6.
Cells ; 11(14)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35883578

RESUMO

How the brain develops and achieves its final size is a fascinating issue that questions cortical evolution across species and man's place in the animal kingdom. Although animal models have so far been highly valuable in understanding the key steps of cortical development, many human specificities call for appropriate models. In particular, microcephaly, a neurodevelopmental disorder that is characterized by a smaller head circumference has been challenging to model in mice, which often do not fully recapitulate the human phenotype. The relatively recent development of brain organoid technology from induced pluripotent stem cells (iPSCs) now makes it possible to model human microcephaly, both due to genetic and environmental origins, and to generate developing cortical tissue from the patients themselves. These 3D tissues rely on iPSCs differentiation into cortical progenitors that self-organize into neuroepithelial rosettes mimicking the earliest stages of human neurogenesis in vitro. Over the last ten years, numerous protocols have been developed to control the identity of the induced brain areas, the reproducibility of the experiments and the longevity of the cultures, allowing analysis of the later stages. In this review, we describe the different approaches that instruct human iPSCs to form cortical organoids, summarize the different microcephalic conditions that have so far been modeled by organoids, and discuss the relevance of this model to decipher the cellular and molecular mechanisms of primary and secondary microcephalies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microcefalia , Animais , Humanos , Camundongos , Neurogênese , Organoides , Reprodutibilidade dos Testes
7.
Nat Commun ; 13(1): 16, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013230

RESUMO

Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors.


Assuntos
Proliferação de Células , Microcefalia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Vesículas Transportadoras , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Células Cultivadas , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Megalencefalia/etiologia , Megalencefalia/metabolismo , Megalencefalia/patologia , Camundongos , Microcefalia/etiologia , Microcefalia/metabolismo , Microcefalia/patologia , Malformações do Sistema Nervoso/etiologia , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Neuroglia/metabolismo , Transporte Proteico/fisiologia , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/patologia
8.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019079

RESUMO

Neurons of the neocortex are generated by stem cells called radial glial cells. These polarized cells extend a short apical process toward the ventricular surface and a long basal fiber that acts as a scaffold for neuronal migration. How the microtubule cytoskeleton is organized in these cells to support long-range transport is unknown. Using subcellular live imaging within brain tissue, we show that microtubules in the apical process uniformly emanate for the pericentrosomal region, while microtubules in the basal fiber display a mixed polarity, reminiscent of the mammalian dendrite. We identify acentrosomal microtubule organizing centers localized in varicosities of the basal fiber. CAMSAP family members accumulate in these varicosities, where they control microtubule growth. Double knockdown of CAMSAP1 and 2 leads to a destabilization of the entire basal process. Finally, using live imaging of human fetal cortex, we reveal that this organization is conserved in basal radial glial cells, a related progenitor cell population associated with human brain size expansion.


Assuntos
Células Ependimogliais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Linhagem da Célula , Movimento Celular , Idade Gestacional , Humanos , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Neocórtex/embriologia , Transdução de Sinais , Fatores de Tempo , Imagem com Lapso de Tempo
9.
Nat Commun ; 12(1): 6298, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728600

RESUMO

Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs' anchoring and migration within the human brain. We propose that its temporal expression influences NPCs' delamination, corticogenesis and gyrification extrinsically.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Córtex Cerebral/citologia , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neocórtex/citologia , Células-Tronco Neurais/citologia , Neuroglia/metabolismo , Animais , Diferenciação Celular , Córtex Cerebral/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo
11.
Methods Cell Biol ; 131: 349-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794523

RESUMO

Development of the cerebral cortex is a very dynamic process, involving a series of complex morphogenetic events. Following division of progenitor cells in the ventricular zone, neurons undergo a series of morphological changes and migrate outward toward the cortical plate, where they differentiate and integrate into functional circuits. Errors at several of stages during neurogenesis and migration cause a variety of severe cortical malformations. A number of disease genes encode factors associated with the cytoskeleton, which plays a crucial role throughout cortical development. Methods for regulating gene expression coupled with imaging of subcellular structures have provided important insight into the mechanisms governing normal and abnormal brain development. We describe here a series of protocols for imaging motor protein-dependent processes in real time in the developing rat brain.


Assuntos
Córtex Cerebral/metabolismo , Proteínas Motores Moleculares/genética , Células-Tronco Neurais/metabolismo , Animais , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Eletroporação/métodos , Embrião de Mamíferos/inervação , Células Ependimogliais/citologia , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Proteína Vermelha Fluorescente
12.
EBioMedicine ; 10: 71-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27453325

RESUMO

The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV), can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV) and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4). We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV.


Assuntos
Flavivirus/fisiologia , Neocórtex/citologia , Neocórtex/virologia , Células-Tronco Neurais/virologia , Tropismo Viral , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Apoptose , Ciclo Celular , Modelos Animais de Doenças , Flavivirus/classificação , Camundongos , Filogenia , Células Vero
13.
Dev Cell ; 33(6): 703-16, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26051540

RESUMO

Dynein recruitment to the nuclear envelope is required for pre-mitotic nucleus-centrosome interactions in nonneuronal cells and for apical nuclear migration in neural stem cells. In each case, dynein is recruited to the nuclear envelope (NE) specifically during G2 via two nuclear pore-mediated mechanisms involving RanBP2-BicD2 and Nup133-CENP-F. The mechanisms responsible for cell-cycle control of this behavior are unknown. We now find that Cdk1 serves as a direct master controller for NE dynein recruitment in neural stem cells and HeLa cells. Cdk1 phosphorylates conserved sites within RanBP2 and activates BicD2 binding and early dynein recruitment. Late recruitment is triggered by a Cdk1-induced export of CENP-F from the nucleus. Forced NE targeting of BicD2 overrides Cdk1 inhibition, fully rescuing dynein recruitment and nuclear migration in neural stem cells. These results reveal how NE dynein recruitment is cell-cycle regulated and identify the trigger mechanism for apical nuclear migration in the brain.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Dineínas/metabolismo , Células-Tronco Neurais/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Proteína Quinase CDC2 , Quinases Ciclina-Dependentes/antagonistas & inibidores , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Modelos Neurológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Células-Tronco Neurais/citologia , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Ratos Transgênicos
14.
Mol Biol Cell ; 23(18): 3591-601, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22855530

RESUMO

Microtubules (MTs) are essential for cell division, shape, intracellular transport, and polarity. MT stability is regulated by many factors, including MT-associated proteins and proteins controlling the amount of free tubulin heterodimers available for polymerization. Tubulin-binding cofactors are potential key regulators of free tubulin concentration, since they are required for α-ß-tubulin dimerization in vitro. In this paper, we show that mutation of the Drosophila tubulin-binding cofactor B (dTBCB) affects the levels of both α- and ß-tubulins and dramatically destabilizes the MT network in different fly tissues. However, we find that dTBCB is dispensable for the early MT-dependent steps of oogenesis, including cell division, and that dTBCB is not required for mitosis in several tissues. In striking contrast, the absence of dTBCB during later stages of oogenesis causes major defects in cell polarity. We show that dTBCB is required for the polarized localization of the axis-determining mRNAs within the oocyte and for the apico-basal polarity of the surrounding follicle cells. These results establish a developmental function for the dTBCB gene that is essential for viability and MT-dependent cell polarity, but not cell division.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Animais Geneticamente Modificados , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Polaridade Celular/genética , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Mutação , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Oogênese/genética , Oogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
Dev Cell ; 18(5): 790-801, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20493812

RESUMO

Microtubules (MTs) are essential for many cell features, such as polarity, motility, shape, and vesicle trafficking. Therefore, in a multicellular organism, their organization differs between cell types and during development; however, the control of this process remains elusive. Here, we show that during Drosophila tracheal morphogenesis, MT reorganization is coupled to relocalization of the microtubule organizing centers (MTOC) components from the centrosome to the apical cell domain from where MTs then grow. We reveal that this process is controlled by the trachealess patterning gene in a two-step mechanism. MTOC components are first released from the centrosome by the activity of the MT-severing protein Spastin, and then anchored apically through the transmembrane protein Piopio. We further show that these changes are essential for tracheal development, thus stressing the functional relevance of MT reorganization for morphogenesis.


Assuntos
Drosophila/crescimento & desenvolvimento , Microtúbulos/fisiologia , Traqueia/crescimento & desenvolvimento , Adenosina Trifosfatases/fisiologia , Animais , Proteínas de Transporte/fisiologia , Diferenciação Celular , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Centríolos/fisiologia , Centríolos/ultraestrutura , Centrossomo/fisiologia , Drosophila/embriologia , Proteínas de Drosophila/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Morfogênese/fisiologia , Traqueia/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa