Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(38): e2200252119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095212

RESUMO

In humans, the uterus undergoes a dramatic transformation to form an endometrial stroma-derived secretory tissue, termed decidua, during early pregnancy. The decidua secretes various factors that act in an autocrine/paracrine manner to promote stromal differentiation, facilitate maternal angiogenesis, and influence trophoblast differentiation and development, which are critical for the formation of a functional placenta. Here, we investigated the mechanisms by which decidual cells communicate with each other and with other cell types within the uterine milieu. We discovered that primary human endometrial stromal cells (HESCs) secrete extracellular vesicles (EVs) during decidualization and that this process is controlled by a conserved HIF2α-RAB27B pathway. Mass spectrometry revealed that the decidual EVs harbor a variety of protein cargo, including cell signaling molecules, growth modulators, metabolic regulators, and factors controlling endothelial cell expansion and remodeling. We tested the hypothesis that EVs secreted by the decidual cells mediate functional communications between various cell types within the uterus. We demonstrated that the internalization of EVs, specifically those carrying the glucose transporter 1 (GLUT1), promotes glucose uptake in recipient HESCs, supporting and advancing the decidualization program. Additionally, delivery of HESC-derived EVs into human endothelial cells stimulated their proliferation and led to enhanced vascular network formation. Strikingly, stromal EVs also promoted the differentiation of trophoblast stem cells into the extravillous trophoblast lineage. Collectively, these findings provide a deeper understanding of the pleiotropic roles played by EVs secreted by the decidual cells to ensure coordination of endometrial differentiation and angiogenesis with trophoblast function during the progressive phases of decidualization and placentation.


Assuntos
Decídua , Vesículas Extracelulares , Trofoblastos , Diferenciação Celular , Decídua/citologia , Decídua/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Neovascularização Fisiológica , Gravidez , Células Estromais/citologia , Células Estromais/fisiologia , Trofoblastos/citologia , Trofoblastos/fisiologia
2.
Proc Natl Acad Sci U S A ; 117(25): 14532-14542, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513733

RESUMO

Implantation is initiated when an embryo attaches to the uterine luminal epithelium and subsequently penetrates into the underlying stroma to firmly embed in the endometrium. These events are followed by the formation of an extensive vascular network in the stroma that supports embryonic growth and ensures successful implantation. Interestingly, in many mammalian species, these processes of early pregnancy occur in a hypoxic environment. However, the mechanisms underlying maternal adaptation to hypoxia during early pregnancy remain unclear. In this study, using a knockout mouse model, we show that the transcription factor hypoxia-inducible factor 2 alpha (Hif2α), which is induced in subluminal stromal cells at the time of implantation, plays a crucial role during early pregnancy. Indeed, when preimplantation endometrial stromal cells are exposed to hypoxic conditions in vitro, we observed a striking enhancement in HIF2α expression. Further studies revealed that HIF2α regulates the expression of several metabolic and protein trafficking factors, including RAB27B, at the onset of implantation. RAB27B is a member of the Rab family of GTPases that allows controlled release of secretory granules. These granules are involved in trafficking MMP-9 from the stroma to the epithelium to promote luminal epithelial remodeling during embryo invasion. As pregnancy progresses, the HIF2α-RAB27B pathway additionally mediates crosstalk between stromal and endothelial cells via VEGF granules, developing the vascular network critical for establishing pregnancy. Collectively, our study provides insights into the intercellular communication mechanisms that operate during adaptation to hypoxia, which is essential for embryo implantation and establishment of pregnancy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/fisiologia , Implantação do Embrião/fisiologia , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Comunicação Celular/fisiologia , Linhagem Celular , Embrião de Mamíferos , Endométrio/citologia , Endométrio/metabolismo , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Gravidez , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia , Células Estromais , Proteínas rab de Ligação ao GTP/genética
3.
PLoS Genet ; 13(3): e1006654, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28278176

RESUMO

In the mammary gland, genetic circuits controlled by estrogen, progesterone, and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. However, the precise mechanisms underlying the crosstalk between the hormonal and growth factor pathways remain poorly understood. We have identified the CUB and zona pellucida-like domain-containing protein 1 (CUZD1), expressed in mammary ductal and alveolar epithelium, as a novel mediator of mammary gland proliferation and differentiation during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in mammary ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Gene expression profiling of mammary epithelium revealed that CUZD1 regulates the expression of a subset of the EGF family growth factors, epiregulin, neuregulin-1, and epigen, which act in an autocrine fashion to activate ErbB1 and ErbB4 receptors. Proteomic studies further revealed that CUZD1 interacts with a complex containing JAK1/JAK2 and STAT5, downstream transducers of prolactin signaling in the mammary gland. In the absence of CUZD1, STAT5 phosphorylation in the mammary epithelium during alveologenesis was abolished. Conversely, elevated expression of Cuzd1 in mammary epithelial cells stimulated prolactin-induced phosphorylation and nuclear translocation of STAT5. Chromatin immunoprecipitation confirmed co-occupancy of phosphorylated STAT5 and CUZD1 in the regulatory regions of epiregulin, a potential regulator of epithelial proliferation, and whey acidic protein, a marker of epithelial differentiation. Collectively, these findings suggest that CUZD1 plays a critical role in prolactin-induced JAK/STAT5 signaling that controls the expression of key STAT5 target genes involved in mammary epithelial proliferation and differentiation during alveolar development.


Assuntos
Janus Quinase 1/genética , Janus Quinase 2/genética , Glândulas Mamárias Animais/metabolismo , Proteínas de Membrana/genética , Fator de Transcrição STAT5/genética , Transdução de Sinais/genética , Animais , Western Blotting , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Família de Proteínas EGF/genética , Família de Proteínas EGF/metabolismo , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação/efeitos dos fármacos , Gravidez , Prolactina/farmacologia , Ligação Proteica , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo
4.
J Biol Chem ; 293(8): 2850-2864, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29321207

RESUMO

The peptide hormone prolactin (PRL) and certain members of the epidermal growth factor (EGF) family play central roles in mammary gland development and physiology, and their dysregulation has been implicated in mammary tumorigenesis. Our recent studies have revealed that the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) is a critical factor for PRL-mediated activation of the transcription factor STAT5 in mouse mammary epithelium. Of note, CUZD1 controls production of a specific subset of the EGF family growth factors and consequent activation of their receptors. Here, we found that consistent with this finding, CUZD1 overexpression in non-transformed mammary epithelial HC11 cells increases their proliferation and induces tumorigenic characteristics in these cells. When introduced orthotopically in mouse mammary glands, these cells formed adenocarcinomas, exhibiting elevated levels of STAT5 phosphorylation and activation of the EGF signaling pathway. Selective blockade of STAT5 phosphorylation by pimozide, a small-molecule inhibitor, markedly reduced the production of the EGF family growth factors and inhibited PRL-induced tumor cell proliferation in vitro Pimozide administration to mice also suppressed CUZD1-driven mammary tumorigenesis in vivo Analysis of human MCF7 breast cancer cells indicated that CUZD1 controls the production of the same subset of EGF family members in these cells as in the mouse. Moreover, pimozide treatment reduced the proliferation of these cancer cells. Collectively, these findings indicate that overexpression of CUZD1, a regulator of growth factor pathways controlled by PRL and STAT5, promotes mammary tumorigenesis. Blockade of the STAT5 signaling pathway downstream of CUZD1 may offer a therapeutic strategy for managing these breast tumors.


Assuntos
Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Animais , Anticarcinógenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Interferência de RNA , Receptores da Prolactina/antagonistas & inibidores , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT5/antagonistas & inibidores , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
PLoS Genet ; 11(8): e1005458, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26305333

RESUMO

During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal-endothelial and stromal-trophoblast crosstalk critical for placenta development and establishment of pregnancy.


Assuntos
Decídua/metabolismo , Placentação , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Camundongos Transgênicos , Neovascularização Fisiológica , Gravidez , Ativação Transcricional , Trofoblastos , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
PLoS Genet ; 10(3): e1004230, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603706

RESUMO

The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα) signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E) at the level of the pituitary led to increased production of luteinizing hormone (LH) by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis.


Assuntos
Carcinogênese/genética , Receptor alfa de Estrogênio/biossíntese , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Animais , Carcinoma Epitelial do Ovário , Receptor alfa de Estrogênio/genética , Estrogênios/administração & dosagem , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Humanos , Hipotálamo/metabolismo , Letrozol , Camundongos , Neoplasias Epiteliais e Glandulares/etiologia , Nitrilas/administração & dosagem , Neoplasias Ovarianas/etiologia , Ovário/metabolismo , Ovário/patologia , Hipófise/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triazóis/administração & dosagem
7.
PLoS Genet ; 8(2): e1002500, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383889

RESUMO

The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2(d/d)), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2(d/d) mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated ß-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy.


Assuntos
Implantação do Embrião/genética , Proteínas de Homeodomínio/genética , Fator de Transcrição MSX1/genética , Prenhez/genética , Animais , Epitélio/fisiologia , Feminino , Genes Homeobox , Camundongos , Comunicação Parácrina/genética , Gravidez , Células Estromais/fisiologia , Útero/citologia , Útero/fisiologia
8.
Mol Hum Reprod ; 20(3): 260-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24270393

RESUMO

Accumulating evidence indicates that reduced fecundity associated with endometriosis reflects a failure of embryonic receptivity. Microdomains composed of endometrial gap junctions, which facilitate cell-cell communication, may be implicated. Pharmacological or genetic inhibition of connexin (Cx) 43 block human endometrial cell differentiation in vitro and conditional uterine deletion of Cx43 alleles cause implantation failure in mice. The aim of this study was to determine whether women with endometriosis have reduced eutopic endometrial Cx43. Cx26 acted as a control. Endometrial biopsies were collected from age, race and cycle phase-matched women without (15 controls) or with histologically confirmed endometriosis (15 cases). Immunohistochemistry confirmed a predominant localization of Cx43 in the endometrial stroma, whereas Cx26 was confined to the epithelium. Cx43 immunostaining was reduced in eutopic biopsies of endometriosis subjects and western blotting of tissue lysates confirmed lower Cx43 levels in endometriosis cases, with Cx43/ß-actin ratios=.4±1.5 in control and =1.2±0.3 in endometriosis biopsies (P<0.01). When endometrial stromal cells (ESC) were isolated from endometriosis cases, Cx43 levels and scrape loading-dye transfer were reduced by ∼45% compared with ESC from controls. In vitro decidualization of ESC derived from endometriosis versus control subjects resulted in lesser epithelioid transformation and a significantly reduced up-regulation of Cx43 protein (1.2±0.2- versus 1.7±0.4-fold, P<0.01). No changes in Cx26 were observed. While basal steady-state levels of Cx43 mRNA did not differ with respect to controls, ESC from endometriosis cases failed to manifest a response to hormone treatment in vitro. In summary, eutopic endometrial Cx43 concentrations in endometriosis cases were <50% those of controls in vivo and in vitro, functional gap junctions were reduced and hormone-induced Cx43 mRNA levels were blunted.


Assuntos
Conexina 43/genética , Endometriose/genética , Endométrio/metabolismo , RNA Mensageiro/genética , Células Estromais/metabolismo , Actinas/genética , Actinas/metabolismo , Comunicação Celular , Diferenciação Celular , Conexina 26 , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Endometriose/metabolismo , Endometriose/patologia , Endométrio/efeitos dos fármacos , Endométrio/patologia , Estradiol/farmacologia , Feminino , Junções Comunicantes , Expressão Gênica , Humanos , Cultura Primária de Células , Progesterona/farmacologia , RNA Mensageiro/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/patologia
9.
Mol Reprod Dev ; 81(7): 666-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24753074

RESUMO

One of the most dynamic adult human tissues is the endometrium. Through coordinated, cyclical proliferation, differentiation, leukocyte recruitment, apoptosis, and desquamation, the uterine lining is expanded and shed monthly, unless pregnancy is established. Errors in these steps potentially cause endometrial dysfunction, abnormal uterine bleeding, failed embryonic implantation, infertility, or endometrial carcinoma. Our prior studies showed that gap junctions comprised of Gap junction alpha-1 (GJA1) protein, also known as connexin 43 (CX43), subunits are critical to endometrial stromal cell differentiation. The current studies were undertaken to explore the mechanism of endometrial dysfunction when gap junction intercellular communication (GJIC) is disrupted. Gap junction blockade by two distinct GJIC inhibitors, 18α-glycyrrhetinic acid (AGA) and octanol (OcOH), suppressed proliferation and induced apoptosis in endometrial stromal cells, as manifested by reduced biomarkers of cell viability, increased TUNEL staining, caspase-3 activation, sub-G1 chromosomal DNA complement, as well as shortened telomere length. Unexpectedly, we also observed that the chemical inhibitors blocked CX43 gene expression. Moreover, when endometrial stromal cells were induced to undergo hormonal decidualization, following a 7-day exposure to 10 nM 17ß-estradiol + 100 nM progesterone + 0.5 mM dibutyryl cAMP, characteristic epithelioid changes in cell shape and secretion of prolactin were blunted in the presence of AGA or OcOH, recapitulating effects of RNA interference of CX43. Our findings indicate that endometrial stromal cell proliferation and maintenance of decidualized endometrial function are GJIC-dependent, and that disruption of gap junctions induces endometrial stromal cell apoptosis. These observations may have important implications for several common clinical endometrial pathologies.


Assuntos
Apoptose/fisiologia , Endométrio/citologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Células Estromais/fisiologia , Forma Celular/efeitos dos fármacos , Forma Celular/fisiologia , Conexina 43/análise , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Humanos , Octanóis/farmacologia , Telômero/efeitos dos fármacos , Telômero/metabolismo
10.
Cell Death Discov ; 10(1): 288, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879630

RESUMO

As the mean age of first-time mothers increases in the industrialized world, inquiries into causes of human reproductive senescence have followed. Rates of ovulatory dysfunction and oocyte aneuploidy parallel chronological age, but poor reproductive outcomes in women older than 35 years are also attributed to endometrial senescence. The current studies, using primary human endometrial stromal cell (ESC) cultures as an in vitro model for endometrial aging, characterize the proinflammatory cytokine, IL-1ß-mediated and passage number-dependent effects on ESC phenotype. ESC senescence was accelerated by incubation with IL-1ß, which was monitored by RNA sequencing, ELISA, immunocytochemistry and Western blotting. Senescence associated secreted phenotype (SASP) proteins, IL-1ß, IL-6, IL-8, TNF-α, MMP3, CCL2, CCL5, and other senescence-associated biomarkers of DNA damage (p16, p21, HMGB1, phospho-γ-histone 2 A.X) were noted to increase directly in response to 0.1 nM IL-1ß stimulation. Production of the corresponding SASP proteins increased further following extended cell passage. Using enzyme inhibitors and siRNA interference, these effects of IL-1ß were found to be mediated via the c-Jun N-terminal kinase (JNK) signaling pathway. Hormone-induced ESC decidualization, classical morphological and biochemical endocrine responses to estradiol, progesterone and cAMP stimulation (prolactin, IGFBP-1, IL-11 and VEGF), were attenuated pari passu with prolonged ESC passaging. The kinetics of differentiation responses varied in a biomarker-specific manner, with IGFBP-1 and VEGF secretion showing the largest and smallest reductions, with respect to cell passage number. ESC hormone responsiveness was most robust when limited to the first six cell passages. Hence, investigation of ESC cultures as a decidualization model should respect this limitation of cell aging. The results support the hypotheses that "inflammaging" contributes to endometrial senescence, disruption of decidualization and impairment of fecundity. IL-1ß and the JNK signaling pathway are pathogenetic targets amenable to pharmacological correction or mitigation with the potential to reduce endometrial stromal senescence and enhance uterine receptivity.

11.
J Biol Chem ; 287(23): 19622-30, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22514284

RESUMO

Concerted actions of estrogen and progesterone via their cognate receptors orchestrate changes in the uterine tissue, regulating implantation during early pregnancy. The uterine stromal cells undergo steroid-dependent differentiation into morphologically and functionally distinct decidual cells, which support embryonic growth and survival. The hormone-regulated pathways underlying this unique cellular transformation are not fully understood. Previous studies in the mouse revealed that, following embryo attachment, de novo synthesis of estrogen by the decidual cells is critical for stromal differentiation. In this study we report that Fos-related antigen 1 (FRA-1), a member of the Fos family of transcription factors, is a downstream target of regulation by intrauterine estrogen. FRA-1 expression was localized in the differentiating uterine stromal cells surrounding the implanted embryo. Attenuation of estrogen receptor α (Esr1) expression by siRNA mediated silencing in primary uterine stromal cells suppressed FRA-1 expression. Furthermore, chromatin immunoprecipitation demonstrated direct recruitment of ESR1 to an estrogen response element in the Fra-1 promoter. Down-regulation of Fra-1 expression during in vitro decidualization blocked stromal differentiation and resulted in a marked decrease in stromal cell migration. Interestingly, FRA-1 controls the expression of matrix metalloproteinases MMP9 and MMP13, which are critical modulators of stromal extracellular matrix remodeling. Collectively, these results suggest that FRA-1, induced in response to estrogen signaling via ESR1, is a key regulator of stromal differentiation and remodeling during early pregnancy.


Assuntos
Diferenciação Celular/fisiologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Gravidez/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Útero/metabolismo , Animais , Movimento Celular/fisiologia , Implantação do Embrião/fisiologia , Receptor alfa de Estrogênio/genética , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Metaloproteinase 13 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Células Estromais/citologia , Células Estromais/metabolismo , Útero/citologia
12.
PLoS Med ; 10(11): e1001551, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24265601

RESUMO

BACKGROUND: Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. METHODS AND FINDINGS: Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. CONCLUSIONS: HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies. Please see later in the article for the Editors' Summary.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Metilação de DNA , Neoplasias do Endométrio/genética , Endométrio/patologia , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Idoso , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diagnóstico Precoce , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Humanos , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/metabolismo , Progesterona/uso terapêutico , RNA/metabolismo
13.
Cells ; 12(22)2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998319

RESUMO

There are several critical events that occur in the uterus during early pregnancy which are necessary for the establishment and maintenance of pregnancy. These events include blastocyst implantation, uterine decidualization, uterine neoangiogenesis, differentiation of trophoblast stem cells into different trophoblast cell lineages, and formation of a placenta. These processes involve several different cell types within the pregnant uterus. Communication between these cell types must be intricately coordinated for successful embryo implantation and the formation of a functional maternal-fetal interface in the placenta. Understanding how this intricate coordination transpires has been a focus of researchers in the field for many years. It has long been understood that maternal endometrial tissue plays a key role in intercellular signaling during early pregnancy, sending signals to nearby tissues in a paracrine manner. Recently, insights have been obtained into the mechanisms by which these signaling events occur. Notably, the endometrium has been shown to secrete extracellular vesicles (EVs) that contain crucial cargo (proteins, lipids, RNA, miRNA) that are taken up by recipient cells to initiate a response leading to the occurrence of critical events during implantation and placentation. In this review, we aim to summarize the role that endometrium-derived EVs play in mediating cell-to-cell communications within the pregnant uterus to orchestrate the events that must occur to establish and maintain pregnancy. We will also discuss how aberrant endometrial EV signaling may lead to pathophysiological conditions, such as endometriosis and infertility.


Assuntos
Vesículas Extracelulares , Útero , Gravidez , Feminino , Humanos , Útero/metabolismo , Endométrio/metabolismo , Comunicação Celular , Implantação do Embrião/fisiologia , Vesículas Extracelulares/metabolismo
14.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993295

RESUMO

During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1 -null mouse model ( Runx1 d/d ) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1 d/d mice exhibited severely compromised decidual angiogenesis, and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1 d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed a critical role of Runx1 in controlling insulin-like growth factor (IGF) signaling at the maternal-fetal interface. While Runx1-deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGF-binding protein 4 (IGFBP4), which regulates the bioavailability of IGFs thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1 d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development. Significance: A clear understanding of the maternal pathways that ensure coordination of uterine differentiation and angiogenesis with embryonic growth during the critical early stages of placenta formation still eludes us. The present study reveals that the transcription factor Runx1 controls a set of molecular, cellular, and integrative mechanisms that mediate maternal adaptive responses controlling uterine angiogenesis, trophoblast differentiation, and resultant uterine vascular remodeling, which are essential steps during placenta development.

15.
Reprod Toxicol ; 120: 108446, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482143

RESUMO

Di-isononyl phthalate (DiNP), an endocrine-disrupting chemical, is found in numerous consumer products and human exposure to this phthalate is becoming inevitable. The impact of DiNP exposure on the establishment and maintenance of pregnancy remains largely unknown. Thus, we conducted studies in which pregnant mice were exposed to an environmentally relevant dose (20 µg/kg BW/day) of DiNP on days 1-7 of gestation, then analyzed the effects of this exposure on pregnancy outcome. Our studies revealed that exposure to DiNP during this window led to fetal loss towards the end of gestation. Further studies showed that, although embryos were able to attach to the uterus, implantation sites in DiNP-exposed uteri exhibited impaired differentiation of stromal cells to decidual cells and an underdeveloped angiogenic network in the decidual bed. We also found that exposure to this phthalate has a significant effect on trophoblast differentiation and causes disorganization of the placental layers. The labyrinth was significantly reduced, resulting in compromised expression of nutrient transporters in the placentas of mice exposed to DiNP. These placental defects in DiNP-exposed females were the cause of fetal loss during the later stages of gestation.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Camundongos , Gravidez , Feminino , Animais , Placentação , Placenta , Ácidos Ftálicos/toxicidade
16.
PNAS Nexus ; 2(7): pgad215, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37416873

RESUMO

During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1-null mouse model (Runx1d/d) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1d/d mice exhibited severely compromised decidual angiogenesis and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed that Runx1 controls the expression of insulin-like growth factor (IGF) 2 and IGF-binding protein 4 (IGFBP4) during early pregnancy. While Runx1 deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGFBP4, which regulates the bioavailability of IGFs, thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development.

17.
Reprod Toxicol ; 122: 108491, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863342

RESUMO

Phthalates are synthetic chemicals widely used as plasticizers and stabilizers in various consumer products. Because of the extensive production and use of phthalates, humans are exposed to these chemicals daily. While most studies focus on a single phthalate, humans are exposed to a mixture of phthalates on a regular basis. The impact of continuous exposure to phthalate mixture on uterus is largely unknown. Thus, we conducted studies in which adult female mice were exposed for 6 months to 0.15 ppm and 1.5 ppm of a mixture of phthalates via chow ad libitum. Our studies revealed that consumption of phthalate mixture at 0.15 ppm and 1.5 ppm for 6 months led to a significant increase in the thickness of the myometrial layer compared to control. Further investigation employing RNA-sequencing revealed an elevated transforming growth factor beta (TGF-ß) signaling in the uteri of mice fed with phthalate mixture. TGF-ß signaling is associated with the development of fibrosis, a consequence of excessive accumulation of extracellular matrix components, such as collagen fibers in a tissue. Consistent with this observation, we found a higher incidence of collagen deposition in uteri of mice exposed to phthalate mixture compared to unexposed controls. Second Harmonic Generation (SHG) imaging showed disorganized collagen fibers and nanoindentation indicated a local increase in uterine stiffness upon exposure to phthalate mixture. Collectively, our results demonstrate that chronic exposure to phthalate mixture can have adverse effects on uterine homeostasis.


Assuntos
Poluentes Ambientais , Leiomioma , Ácidos Ftálicos , Fator de Crescimento Transformador beta , Animais , Feminino , Camundongos , Colágeno , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Fator de Crescimento Transformador beta/genética , Leiomioma/induzido quimicamente
18.
J Biol Chem ; 286(22): 19860-71, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21471197

RESUMO

During implantation, the uterine stromal cells undergo terminal differentiation into decidual cells, which support the proper progression of maternal-embryo interactions to successful establishment of pregnancy. The decidual cells synthesize extracellular matrix (ECM) components, such as laminins and collagens, which assemble into a unique basal lamina-like network that surrounds these cells. The functional significance of this matrix during implantation is unknown. We previously showed that the transcription factor CCAAT enhancer-binding protein ß (C/EBPß) critically regulates decidualization in the mouse. We now provide evidence that C/EBPß directly controls the Lamc1 gene, which encodes a predominant laminin constituent of the ECM produced by the decidual cells. Suppression of Lamc1 expression in mouse primary endometrial stromal cells prevented the assembly of this ECM and impaired stromal differentiation. Attenuation of expression of integrin ß1, a major constituent of the integrin receptors targeted by decidual laminins, also inhibited this differentiation process. Disruption of laminin-integrin interactions led to impaired activation of the focal adhesion kinase, an integrin-mediated regulator of cytoskeletal remodeling during decidualization. To further analyze the role of the decidual ECM in modulating maternal-embryo interactions, we monitored trophoblast invasion into differentiating uterine stromal monolayers, using a co-culture system. Silencing of stromal Lamc1 expression, which prevented formation of the basal lamina-like matrix, resulted in marked reduction in trophoblast outgrowth. Collectively, our findings identified C/EBPß as a critical regulator of the unique ECM that controls decidual cell architecture and differentiation, and it provided new insights into the mechanisms by which the uterine stromal microenvironment controls the progression of embryo implantation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Decídua/metabolismo , Implantação do Embrião/fisiologia , Regulação da Expressão Gênica/fisiologia , Trofoblastos/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Decídua/citologia , Ativação Enzimática , Matriz Extracelular , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Inativação Gênica , Integrinas/genética , Integrinas/metabolismo , Laminina/biossíntese , Laminina/genética , Troca Materno-Fetal/fisiologia , Camundongos , Gravidez , Células Estromais/citologia , Células Estromais/metabolismo , Trofoblastos/citologia
19.
FASEB J ; 25(4): 1176-87, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21163860

RESUMO

WNT4, a member of the Wnt family of ligands, is critical for the development of the female reproductive tract. Analysis of Wnt4 expression in the adult uterus during pregnancy indicates that it may play a role in the regulation of endometrial stromal cell proliferation, survival, and differentiation, which is required to support the developing embryo. To investigate the role of Wnt4 in adult uterine physiology, conditional ablation of Wnt4 using the PR(cre) mouse model was accomplished. Ablation of Wnt4 rendered female mice subfertile due to a defect in embryo implantation and subsequent defects in endometrial stromal cell survival, differentiation, and responsiveness to progesterone signaling. In addition to altered stromal cell function, the uteri of PR(cre/+)Wnt4(f/f) (Wnt4(d/d)) mice displayed altered epithelial differentiation characterized by a reduction in the number of uterine glands and the emergence of a p63-positive basal cell layer beneath the columnar luminal epithelial cells. The altered epithelial cell phenotype was further escalated by chronic estrogen treatment, which caused squamous cell metaplasia of the uterine epithelium in the Wnt4(d/d) mice. Thus, WNT4 is a critical regulator not only of proper postnatal uterine development, but also embryo implantation and decidualization.


Assuntos
Decídua/fisiologia , Útero/fisiologia , Proteínas Wnt/fisiologia , Animais , Apoptose/efeitos dos fármacos , Implantação do Embrião/fisiologia , Feminino , Camundongos , Gravidez , Progesterona/fisiologia , Transdução de Sinais/fisiologia , Útero/crescimento & desenvolvimento , Proteína Wnt4
20.
Proc Natl Acad Sci U S A ; 106(30): 12542-7, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19620711

RESUMO

Implantation is initiated when the embryo attaches to the uterine luminal epithelium during early pregnancy. Following this event, uterine stromal cells undergo steroid hormone-dependent transformation into morphologically and functionally distinct decidual cells in a unique process known as decidualization. An angiogenic network is also formed in the uterine stromal bed, critically supporting the early development of the embryo. The steroid-induced mechanisms that promote stromal differentiation and endothelial proliferation during decidualization are not fully understood. Although the role of ovarian progesterone as a key regulator of decidualization is well established, the requirement of ovarian estrogen (E) during this process remains unresolved. Here we show that the expression of P450 aromatase, a key enzyme that converts androgens to E, is markedly induced in mouse uterine stromal cells undergoing decidualization. The aromatase then acts in conjunction with other steroid biosynthetic enzymes present in the decidual tissue to support de novo synthesis of E. This locally produced E is able to support the advancement of the stromal differentiation program even in the absence ovarian E in an ovariectomized, progesterone-supplemented pregnant mouse model. Administration of letrozole, a specific aromatase inhibitor, to these mice blocked the stromal differentiation process. Gene expression profiling further revealed that the intrauterine E induces the expression of several stromal factors that promote neovascularization in the decidual tissue. Collectively, these studies identified the decidual uterus as a novel site of E biosynthesis and uncovered E-regulated maternal signaling pathways that critically control uterine differentiation and angiogenesis during early pregnancy.


Assuntos
Decídua/metabolismo , Estrogênios/biossíntese , Neovascularização Fisiológica , Útero/metabolismo , Animais , Aromatase/genética , Aromatase/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Decídua/irrigação sanguínea , Decídua/citologia , Implantação do Embrião , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Masculino , Camundongos , Ovariectomia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Gravidez , Progesterona/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Útero/irrigação sanguínea , Útero/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa