Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(21): e202401821, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38467562

RESUMO

The electrochemical reductive valorization of CO2, referred to as the CO2RR, is an emerging approach for the conversion of CO2-containing feeds into valuable carbonaceous fuels and chemicals, with potential contributions to carbon capture and use (CCU) for reducing greenhouse gas emissions. Copper surfaces and graphene-embedded, N-coordinated single metal atom (MNC) catalysts exhibit distinctive reactivity, attracting attention as efficient electrocatalysts for CO2RR. This review offers a comparative analysis of CO2RR on copper surfaces and MNC catalysts, highlighting their unique characteristics in terms of CO2 activation, C1/C2(+) product formation, and the competing hydrogen evolution pathway. The assessment underscores the significance of understanding structure-activity relationships to optimize catalyst design for efficient and selective CO2RR. Examining detailed reaction mechanisms and structure-selectivity patterns, the analysis explores recent insights into changes in the chemical catalyst states, atomic motif rearrangements, and fractal agglomeration, providing essential kinetic information from advanced in/ex situ microscopy/spectroscopy techniques. At the end, this review addresses future challenges and solutions related to today's disconnect between our current molecular understanding of structure-activity-selectivity relations in CO2RR and the relevant factors controlling the performance of CO2 electrolyzers over longer times, with larger electrode sizes, and at higher current densities.

2.
Angew Chem Int Ed Engl ; 61(46): e202211360, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36122295

RESUMO

(Bi)carbonate adsorption on Cu(100) in 0.1 M KHCO3 has been studied by in situ scanning tunneling microscopy. Coexistence of different ordered adlayer phases with ( 2 ${\sqrt{2}}$ ×6 2 ${\sqrt{2}}$ )R45° and (4×4) unit cells was observed in the double layer potential regime. The adlayer is rather dynamic and undergoes a reversible order-disorder phase transition at 0 V vs. the reversible hydrogen electrode. Density functional calculations indicate that the adlayer consists of coadsorbed carbonate and water molecules and is strongly stabilized by liquid water in the adjacent electrolyte.

3.
Angew Chem Int Ed Engl ; 60(40): 21966-21972, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34350689

RESUMO

Electrocatalytic denitrification is a promising technology for removing NOx species (NO3- , NO2- and NO). For NOx electroreduction (NOx RR), there is a desire for understanding the catalytic parameters that control the product distribution. Here, we elucidate selectivity and activity of catalyst for NOx RR. At low potential we classify metals by the binding of *NO versus *H. Analogous to classifying CO2 reduction by *CO vs. *H, Cu is able to bind *NO while not binding *H giving rise to a selective NH3 formation. Besides being selective, Cu is active for the reaction found by an activity-volcano. For metals that does not bind NO the reaction stops at NO, similar to CO2 -to-CO. At potential above 0.3 V vs. RHE, we speculate a low barrier for N coupling with NO causing N2 O formation. The work provides a clear strategy for selectivity and aims to inspire future research on NOx RR.

4.
J Am Chem Soc ; 141(4): 1506-1514, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30618253

RESUMO

Electrochemical CO reduction holds the promise to be a cornerstone for sustainable production of fuels and chemicals. However, the underlying understanding of the carbon-carbon coupling toward multiple-carbon products is not complete. Here we present thermodynamically realistic structures of the electrochemical interfaces, determined by explicit ab initio simulations. We investigate how key CO reduction reaction intermediates are stabilized in different electrolytes and at different pH values. We find that the catalytic trends previously observed experimentally can be explained by the interplay between the metal surface and the electrolyte. For the Cu(100) facet with a phosphate buffer electrolyte, the energy efficiency is found to be limited by blocking of a phosphate anion, while in alkali hydroxide solutions (MOH, M = Na, K, Cs), OH* intermediates may be present, and at high overpotential the H* coverage limits the reaction. The results provide insight into the electrochemical interface structure, revealing the limitations for multiple-carbon products, and offer a direct comparison to experiments.

5.
J Am Chem Soc ; 141(31): 12372-12381, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306016

RESUMO

Nitrogen-doped carbon materials featuring atomically dispersed metal cations (M-N-C) are an emerging family of materials with potential applications for electrocatalysis. The electrocatalytic activity of M-N-C materials toward four-electron oxygen reduction reaction (ORR) to H2O is a mainstream line of research for replacing platinum-group-metal-based catalysts at the cathode of fuel cells. However, fundamental and practical aspects of their electrocatalytic activity toward two-electron ORR to H2O2, a future green "dream" process for chemical industry, remain poorly understood. Here we combined computational and experimental efforts to uncover the trends in electrochemical H2O2 production over a series of M-N-C materials (M = Mn, Fe, Co, Ni, and Cu) exclusively comprising atomically dispersed M-Nx sites from molecular first-principles to bench-scale electrolyzers operating at industrial current density. We investigated the effect of the nature of a 3d metal within a series of M-N-C catalysts on the electrocatalytic activity/selectivity for ORR (H2O2 and H2O products) and H2O2 reduction reaction (H2O2RR). Co-N-C catalyst was uncovered with outstanding H2O2 productivity considering its high ORR activity, highest H2O2 selectivity, and lowest H2O2RR activity. The activity-selectivity trend over M-N-C materials was further analyzed by density functional theory, providing molecular-scale understandings of experimental volcano trends for four- and two-electron ORR. The predicted binding energy of HO* intermediate over Co-N-C catalyst is located near the top of the volcano accounting for favorable two-electron ORR. The industrial H2O2 productivity over Co-N-C catalyst was demonstrated in a microflow cell, exhibiting an unprecedented production rate of more than 4 mol peroxide gcatalyst-1 h-1 at a current density of 50 mA cm-2.

6.
Chemphyschem ; 20(22): 3096-3105, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430013

RESUMO

Electrochemical reactions depend on the electrochemical interface between the electrode surfaces and the electrolytes. To control and advance electrochemical reactions there is a need to develop realistic simulation models of the electrochemical interface to understand the interface from an atomistic point-of-view. Here we present a method for obtaining thermodynamic realistic interface structures, a procedure we use to derive specific coverages and to obtain ab initio simulated cyclic voltammograms. As a case study, the method and procedure is applied in a matrix study of three Cu facets in three different electrolytes. The results have been validated by direct comparison to experimental cyclic voltammograms. The alkaline (NaOH) cyclic voltammograms are described by H* and OH*, while in neutral medium (KHCO3 ) the CO 3* species are dominating and in acidic (KCl) the Cl* species prevail. An almost one-to-one mapping is observed from simulation to experiments giving an atomistic understanding of the interface structure of the Cu facets. Atomistic understanding of the interface at relevant eletrolyte conditions will further allow realistic modelling of electrochemical reactions of importance for future eletrocatalytic studies.

7.
Phys Chem Chem Phys ; 20(16): 11152-11159, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29629464

RESUMO

The electrochemical oxidation of methane to methanol at remote oil fields where methane is flared is the ultimate solution to harness this valuable energy resource. In this study we identify a fundamental surface catalytic limitation of this process in terms of a compromise between selectivity and activity, as oxygen evolution is a competing reaction. By investigating two classes of materials, rutile oxides and two-dimensional transition metal nitrides and carbides (MXenes), we find a linear relationship between the energy needed to activate methane, i.e. to break the first C-H bond, and oxygen binding energies on the surface. Based on a simple kinetic model we can conclude that in order to obtain sufficient activity oxygen has to bind weakly to the surface but there is an upper limit to retain selectivity. Few potentially interesting candidates are found but this relatively simple description enables future large scale screening studies for more optimal candidates.

8.
J Synchrotron Radiat ; 24(Pt 1): 296-301, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009570

RESUMO

In this study an analysis strategy towards using the resonant inelastic X-ray scattering (RIXS) technique more effectively compared with X-ray absorption spectroscopy (XAS) is presented. In particular, the question of when RIXS brings extra information compared with XAS is addressed. To answer this question the RIXS plane is analysed using two models: (i) an exciton model and (ii) a continuum model. The continuum model describes the dipole pre-edge excitations while the exciton model describes the quadrupole excitations. Applying our approach to the experimental 1s2p RIXS planes of VO2 and TiO2, it is shown that only in the case of quadrupole excitations being present is additional information gained by RIXS compared with XAS. Combining this knowledge with methods to calculate the dipole contribution in XAS measurements gives scientists the opportunity to plan more effective experiments.

9.
Chemphyschem ; 18(22): 3266-3273, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28872756

RESUMO

In this work, we propose four non-coupled binding energies of intermediates as descriptors, or "genes", for predicting the product distribution in CO2 electroreduction. Simple reactions can be understood by the Sabatier principle (catalytic activity vs. one descriptor), while more complex reactions tend to give multiple very different products and consequently the product selectivity is a more complex property to understand. We approach this, as a logistical classification problem, by grouping metals according to their major experimental product from CO2 electroreduction: H2 , CO, formic acid and beyond CO* (hydrocarbons or alcohols). We compare the groups in terms of multiple binding energies of intermediates calculated by density functional theory. Here, we find three descriptors to explain the grouping: the adsorption energies of H*, COOH*, and CO*. To further classify products beyond CO*, we carry out formaldehyde experiments on Cu, Ag, and Au and combine these results with the literature to group and differentiate alcohol or hydrocarbon products. We find that the oxygen binding (adsorption energy of CH3 O*) is an additional descriptor to explain the alcohol formation in reduction processes. Finally, the adsorption energy of the four intermediates, H*, COOH*, CO*, and CH3 O*, can be used to differentiate, group, and explain products in electrochemical reduction processes involving CO2 , CO, and carbon-oxygen compounds.

10.
Angew Chem Int Ed Engl ; 56(38): 11394-11398, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28710839

RESUMO

Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO2 electroreduction.

12.
J Mater Chem A Mater ; 11(43): 23211-23222, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38013915

RESUMO

Proton exchange membrane fuel cells require reduced construction costs to improve commercial viability, which can be fueled by elimination of platinum as the O2 reduction electrocatalyst. The past 10 years has seen significant developments in synthesis, characterisation, and electrocatalytic performance of the most promising alternative electrocatalyst; single metal atoms coordinated to nitrogen-doped carbon (M-N-C). In this Perspective we recap some of the important achievements of M-N-Cs in the last decade, as well as discussing current knowledge gaps and future research directions for the community. We provide a new outlook on M-N-C stability and atomistic understanding with a set of original density functional theory simulations.

13.
Nat Commun ; 14(1): 844, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792630

RESUMO

Copper offers unique capability as catalyst for multicarbon compounds production in the electrochemical carbon dioxide reduction reaction. In lieu of conventional catalysis alloying with other elements, copper can be modified with organic molecules to regulate product distribution. Here, we systematically study to which extent the carbon dioxide reduction is affected by film thickness and porosity. On a polycrystalline copper electrode, immobilization of porous bipyridine-based films of varying thicknesses is shown to result in almost an order of magnitude enhancement of the intrinsic current density pertaining to ethylene formation while multicarbon products selectivity increases from 9.7 to 61.9%. In contrast, the total current density remains mostly unaffected by the modification once it is normalized with respect to the electrochemical active surface area. Supported by a microkinetic model, we propose that porous and thick films increase both local carbon monoxide partial pressure and the carbon monoxide surface coverage by retaining in situ generated carbon monoxide. This reroutes the reaction pathway toward multicarbon products by enhancing carbon-carbon coupling. Our study highlights the significance of customizing the molecular film structure to improve the selectivity of copper catalysts for carbon dioxide reduction reaction.

14.
ACS Nano ; 17(17): 17489-17498, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643209

RESUMO

Carbon nitrides that expose atomically dispersed single-atom metals in the form of M-N-C (M = metal) sites are attractive earth-abundant catalyst materials that have been demonstrated in electrocatalytic conversion reactions. The catalytic performance is determined by the abundance of N-doped sites and the type of metal coordination to N, but challenges remain to synthesize pristine carbon nitrides with a high concentration of the most active sites and prepare homogeneously doped materials that allow for in-depth characterization of the M-N-C sites and quantitative evaluation of their catalytic performance. Herein, we have synthesized and characterized a well-defined monolayer carbon nitride phase on a Au(111) surface that exposes an exceedingly high concentration of Co-N4 sites. The crystalline monolayer carbon nitride, whose formation is controlled by an on-surface reaction between Co atoms and melamine on Au(111), is characterized by a dense array of 4- and 6-fold N-terminated pockets, whereof only the 4-fold pocket is found to be holding Co atoms. Through detailed characterization using scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory modeling, we determine the atomic structure and chemical state of the carbon nitride network. Furthermore, we show that the monolayer carbon nitride structure is stable and reactive toward the electrocatalytic oxygen reduction reaction in alkaline electrolyte, with a quantitative performance metric that significantly exceeds comparable M-N-C-based catalyst types. The work demonstrates that high-density active catalytic sites can be created using common precursor materials, and the formed networks themselves offer an excellent platform for onward studies addressing the characteristics of M-N-C sites.

15.
Commun Chem ; 6(1): 212, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777576

RESUMO

Electrochemical conversion of organic compounds holds promise for advancing sustainable synthesis and catalysis. This study explored electrochemical carbonyl hydrogenation on single-site M-N-C (Metal Nitrogen-doped Carbon) catalysts using formaldehyde, acetaldehyde, and acetone as model reactants. We strive to correlate and understand the selectivity dependence on the nature of the metal centers. Density Functional Theory calculations revealed similar binding energetics for carbonyl groups through oxygen-down or carbon-down adsorption due to oxygen and carbon scaling. Fe-N-C exhibited specific oxyphilicity and could selectively reduce aldehydes to hydrocarbons. By contrast, the carbophilic Co-N-C selectively converted acetaldehyde and acetone to ethanol and 2-propanol, respectively. We claim that the oxyphilicity of the active sites and consequent adsorption geometry (oxygen-down vs. carbon-down) are crucial in controlling product selectivity. These findings offer mechanistic insights into electrochemical carbonyl hydrogenation and can guide the development of efficient and sustainable electrocatalytic valorization of biomass-derived compounds.

16.
ACS Energy Lett ; 8(2): 1230-1235, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36816776

RESUMO

The lithium-mediated system catalyzes nitrogen to ammonia under ambient conditions. Herein we discover that trace amount of water as an electrolyte additive-in contrast to prior reports from the literature-can effect a dramatic improvement in the Faradaic selectivity of N2 reduction to NH3. We report that an optimal water concentration of 35.9 mM and LiClO4 salt concentration of 0.8 M allows a Faradaic efficiency up to 27.9 ± 2.5% at ambient pressure. We attribute the increase in Faradaic efficiency to the incorporation of Li2O in the solid electrolyte interphase, as suggested by our X-ray photoelectron spectroscopy measurements. Our results highlight the extreme sensitivity of lithium-mediated N2 reduction to small changes in the experimental conditions.

17.
Nat Rev Chem ; 7(3): 184-201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37117902

RESUMO

The Mo/Fe nitrogenase enzyme is unique in its ability to efficiently reduce dinitrogen to ammonia at atmospheric pressures and room temperature. Should an artificial electrolytic device achieve the same feat, it would revolutionize fertilizer production and even provide an energy-dense, truly carbon-free fuel. This Review provides a coherent comparison of recent progress made in dinitrogen fixation on solid electrodes, homogeneous catalysts and nitrogenases. Specific emphasis is placed on systems for which there is unequivocal evidence that dinitrogen reduction has taken place. By establishing the cross-cutting themes and synergies between these systems, we identify viable avenues for future research.

18.
Adv Mater ; 35(14): e2211022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739474

RESUMO

Atomic Fe in N-doped carbon (FeNC) electrocatalysts for oxygen (O2 ) reduction at the cathode of proton exchange membrane fuel cells are the most promising alternative to platinum-group-metal catalysts. Despite recent progress on atomic FeNC O2  reduction, their controlled synthesis and stability for practical applications remain challenging. A two-step synthesis approach has recently led to significant advances in terms of Fe-loading and mass activity; however, the Fe utilization remains low owing to the difficulty of building scaffolds with sufficient porosity that electrochemically exposes the active sites. Herein, this issue is addressed by coordinating Fe in a highly porous nitrogen-doped carbon support (≈3295 m2  g-1 ), prepared by pyrolysis of inexpensive 2,4,6-triaminopyrimidine and a Mg2+ salt active site template and porogen. Upon Fe coordination, a high electrochemical active site density of 2.54 × 1019  sites gFeNC -1  and a record 52% FeNx electrochemical utilization based on in situ nitrite stripping are achieved. The Fe single atoms are characterized pre- and post-electrochemical accelerated stress testing by aberration-corrected high-angle annular dark field scanning transmission electron microscopy, showing no Fe clustering. Moreover, ex situ X-ray absorption spectroscopy and low-temperature Mössbauer spectroscopy suggest the presence of penta-coordinated Fe sites, which are further studied by density functional theory calculations.

19.
ACS Catal ; 13(22): 14513-14522, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026818

RESUMO

Li-mediated ammonia synthesis is, thus far, the only electrochemical method for heterogeneous decentralized ammonia production. The unique selectivity of the solid electrode provides an alternative to one of the largest heterogeneous thermal catalytic processes. However, it is burdened with intrinsic energy losses, operating at a Li plating potential. In this work, we survey the periodic table to understand the fundamental features that make Li stand out. Through density functional theory calculations and experimentation on chemistries analogous to lithium (e.g., Na, Mg, Ca), we find that lithium is unique in several ways. It combines a stable nitride that readily decomposes to ammonia with an ideal solid electrolyte interphase, balancing reagents at the reactive interface. We propose descriptors based on simulated formation and binding energies of key intermediates and further on hard and soft acids and bases (HSAB principle) to generalize such features. The survey will help the community toward electrochemical systems beyond Li for nitrogen fixation.

20.
J Phys Chem Lett ; 13(38): 8928-8934, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36130288

RESUMO

The electrocatalytic N2 oxidation reaction (NOR) using renewable electricity is a promising alternative to the industrial synthesis of nitrate from NH3 oxidation. However, breaking the triple bond in the nitrogen molecule is one of the most essential challenges in chemistry. In this work, we use density functional theory simulations to investigate the plausible reaction mechanisms of electrocatalytic NOR and its competition with oxygen evolution reaction (OER) at the atomic scale. We focus on the electrochemical conversion of inert N2 to active *NO during NOR. We propose formation of *N2O from *N2 and *O as the rate-determining step (RDS). Following the RDS, a microkinetic model is utilized to study the rate of NOR on metal oxides. Our results demonstrate that a lower activation energy is obtained when a catalyst binds *O weakly. We show that the reaction is extremely challenging but also that design strategies have been suggested to promote electrochemical NOR.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa