Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 31(2): 225-238, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33361111

RESUMO

Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.

2.
Plant Physiol ; 191(1): 626-642, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36227084

RESUMO

Toll/Interleukin-1 receptor (TIR) domains are integral to immune systems across all kingdoms. In plants, TIRs are present in nucleotide-binding leucine-rich repeat (NLR) immune receptors, NLR-like, and TIR-only proteins. Although TIR-NLR and TIR signaling in plants require the ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) protein family, TIRs persist in species that have no EDS1 members. To assess whether particular TIR groups evolved with EDS1, we searched for TIR-EDS1 co-occurrence patterns. Using a large-scale phylogenetic analysis of TIR domains from 39 algal and land plant species, we identified 4 TIR families that are shared by several plant orders. One group occurred in TIR-NLRs of eudicots and another in TIR-NLRs across eudicots and magnoliids. Two further groups were more widespread. A conserved TIR-only group co-occurred with EDS1 and members of this group elicit EDS1-dependent cell death. In contrast, a maize (Zea mays) representative of TIR proteins with tetratricopeptide repeats was also present in species without EDS1 and induced EDS1-independent cell death. Our data provide a phylogeny-based plant TIR classification and identify TIRs that appear to have evolved with and are dependent on EDS1, while others have EDS1-independent activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a DNA , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Suscetibilidade a Doenças , Proteínas de Ligação a DNA/metabolismo , Filogenia , Doenças das Plantas/genética , Imunidade Vegetal/fisiologia
3.
Plant Cell ; 32(7): 2158-2177, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32409319

RESUMO

Plant innate immunity relies on nucleotide binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived molecules and activate downstream signaling pathways. We analyzed the variation in NLR gene copy number and identified plants with a low number of NLR genes relative to sister species. We specifically focused on four plants from two distinct lineages, one monocot lineage (Alismatales) and one eudicot lineage (Lentibulariaceae). In these lineages, the loss of NLR genes coincides with loss of the well-known downstream immune signaling complex ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)/PHYTOALEXIN DEFICIENT 4 (PAD4). We expanded our analysis across whole proteomes and found that other characterized immune genes were absent only in Lentibulariaceae and Alismatales. Additionally, we identified genes of unknown function that were convergently lost together with EDS1/PAD4 in five plant species. Gene expression analyses in Arabidopsis (Arabidopsis thaliana) and Oryza sativa revealed that several homologs of the candidates are differentially expressed during pathogen infection, drought, and abscisic acid treatment. Our analysis provides evolutionary evidence for the rewiring of plant immunity in some plant lineages, as well as the coevolution of the EDS1/PAD4 pathway and drought responses.


Assuntos
Alismatales/genética , Proteínas NLR/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Alismatales/imunologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Secas , Evolução Molecular , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Magnoliopsida/imunologia , Oryza/genética , Filogenia , Transdução de Sinais , Sintenia
4.
New Phytol ; 236(5): 1838-1855, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36052715

RESUMO

ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) mediates the induction of defense responses against pathogens in most angiosperms. However, it has recently been shown that a few species have lost EDS1. It is unknown how defense against disease unfolds and evolves in the absence of EDS1. We utilize duckweeds; a collection of aquatic species that lack EDS1, to investigate this question. We established duckweed-Pseudomonas pathosystems and used growth curves and microscopy to characterize pathogen-induced responses. Through comparative genomics and transcriptomics, we show that the copy number of infection-associated genes and the infection-induced transcriptional responses of duckweeds differ from other model species. Pathogen defense in duckweeds has evolved along different trajectories than in other plants, including genomic and transcriptional reprogramming. Specifically, the miAMP1 domain-containing proteins, which are absent in Arabidopsis, showed pathogen responsive upregulation in duckweeds. Despite such divergence between Arabidopsis and duckweed species, we found conservation of upregulation of certain genes and the role of hormones in response to disease. Our work highlights the importance of expanding the pool of model species to study defense responses that have evolved in the plant kingdom independent of EDS1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Araceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Ligação a DNA/metabolismo , Araceae/genética
5.
Plant Physiol ; 183(2): 468-482, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32184345

RESUMO

Disease resistance genes encoding nucleotide-binding and leucine-rich repeat (NLR) intracellular immune receptor proteins detect pathogens by the presence of pathogen effectors. Plant genomes typically contain hundreds of NLR-encoding genes. The availability of the hexaploid wheat (Triticum aestivum) cultivar Chinese Spring reference genome allows a detailed study of its NLR complement. However, low NLR expression and high intrafamily sequence homology hinder their accurate annotation. Here, we developed NLR-Annotator, a software tool for in silico NLR identification independent of transcript support. Although developed for wheat, we demonstrate the universal applicability of NLR-Annotator across diverse plant taxa. We applied our tool to wheat and combined it with a transcript-validated subset of genes from the reference gene annotation to characterize the structure, phylogeny, and expression profile of the NLR gene family. We detected 3,400 full-length NLR loci, of which 1,560 were confirmed as expressed genes with intact open reading frames. NLRs with integrated domains mostly group in specific subclades. Members of another subclade predominantly locate in close physical proximity to NLRs carrying integrated domains, suggesting a paired helper function. Most NLRs (88%) display low basal expression (in the lower 10 percentile of transcripts). In young leaves subjected to biotic stress, we found up-regulation of 266 of the NLRs To illustrate the utility of our tool for the positional cloning of resistance genes, we estimated the number of NLR genes within the intervals of mapped rust resistance genes. Our study will support the identification of functional resistance genes in wheat to accelerate the breeding and engineering of disease-resistant varieties.


Assuntos
Software , Resistência à Doença , Genoma de Planta/genética , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/metabolismo , Triticum/microbiologia
6.
Nat Plants ; 9(3): 385-392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797350

RESUMO

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.


Assuntos
Magnaporthe , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Brasil , Bangladesh
7.
Science ; 373(6555): 655-662, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353948

RESUMO

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular , Zea mays/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Metilação de DNA , Resistência à Doença/genética , Genes de Plantas , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Herança Multifatorial/genética , Fenótipo , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Tetraploidia , Transcriptoma , Sequenciamento Completo do Genoma
8.
Genome Biol ; 19(1): 23, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29458393

RESUMO

BACKGROUND: The plant immune system is innate and encoded in the germline. Using it efficiently, plants are capable of recognizing a diverse range of rapidly evolving pathogens. A recently described phenomenon shows that plant immune receptors are able to recognize pathogen effectors through the acquisition of exogenous protein domains from other plant genes. RESULTS: We show that plant immune receptors with integrated domains are distributed unevenly across their phylogeny in grasses. Using phylogenetic analysis, we uncover a major integration clade, whose members underwent repeated independent integration events producing diverse fusions. This clade is ancestral in grasses with members often found on syntenic chromosomes. Analyses of these fusion events reveals that homologous receptors can be fused to diverse domains. Furthermore, we discover a 43 amino acid long motif associated with this dominant integration clade which is located immediately upstream of the fusion site. Sequence analysis reveals that DNA transposition and/or ectopic recombination are the most likely mechanisms of formation for nucleotide binding leucine rich repeat proteins with integrated domains. CONCLUSIONS: The identification of this subclass of plant immune receptors that is naturally adapted to new domain integration will inform biotechnological approaches for generating synthetic receptors with novel pathogen "baits."


Assuntos
Fusão Gênica , Loci Gênicos , Proteínas NLR/genética , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/imunologia , Receptores Imunológicos/genética , Motivos de Aminoácidos , Cromossomos de Plantas , Duplicação Gênica , Genes de Plantas , Proteínas NLR/química , Filogenia , Proteínas de Plantas/química , Poaceae/classificação , Domínios Proteicos/genética , Receptores Imunológicos/química , Sintenia , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa