Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 139(1): 45-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31456032

RESUMO

Apart from amyloid ß deposition and tau neurofibrillary tangles, Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal loss and astrocytosis in the cerebral cortex. The goal of this study is to investigate genetic factors associated with the neuronal proportion in health and disease. To identify cell-autonomous genetic variants associated with neuronal proportion in cortical tissues, we inferred cellular population structure from bulk RNA-Seq derived from 1536 individuals. We identified the variant rs1990621 located in the TMEM106B gene region as significantly associated with neuronal proportion (p value = 6.40 × 10-07) and replicated this finding in an independent dataset (p value = 7.41 × 10-04) surpassing the genome-wide threshold in the meta-analysis (p value = 9.42 × 10-09). This variant is in high LD with the TMEM106B non-synonymous variant p.T185S (rs3173615; r2 = 0.98) which was previously identified as a protective variant for frontotemporal lobar degeneration (FTLD). We stratified the samples by disease status, and discovered that this variant modulates neuronal proportion not only in AD cases, but also several neurodegenerative diseases and in elderly cognitively healthy controls. Furthermore, we did not find a significant association in younger controls or schizophrenia patients, suggesting that this variant might increase neuronal survival or confer resilience to the neurodegenerative process. The single variant and gene-based analyses also identified an overall genetic association between neuronal proportion, AD and FTLD risk. These results suggest that common pathways are implicated in these neurodegenerative diseases, that implicate neuronal survival. In summary, we identified a protective variant in the TMEM106B gene that may have a neuronal protection effect against general aging, independent of disease status, which could help elucidate the relationship between aging and neuronal survival in the presence or absence of neurodegenerative disorders. Our findings suggest that TMEM106B could be a potential target for neuronal protection therapies to ameliorate cognitive and functional deficits.


Assuntos
Envelhecimento/genética , Encéfalo , Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Neurônios , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Polimorfismo de Nucleotídeo Único
2.
Nat Neurosci ; 24(9): 1302-1312, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34239129

RESUMO

Understanding the tissue-specific genetic controls of protein levels is essential to uncover mechanisms of post-transcriptional gene regulation. In this study, we generated a genomic atlas of protein levels in three tissues relevant to neurological disorders (brain, cerebrospinal fluid and plasma) by profiling thousands of proteins from participants with and without Alzheimer's disease. We identified 274, 127 and 32 protein quantitative trait loci (pQTLs) for cerebrospinal fluid, plasma and brain, respectively. cis-pQTLs were more likely to be tissue shared, but trans-pQTLs tended to be tissue specific. Between 48.0% and 76.6% of pQTLs did not co-localize with expression, splicing, DNA methylation or histone acetylation QTLs. Using Mendelian randomization, we nominated proteins implicated in neurological diseases, including Alzheimer's disease, Parkinson's disease and stroke. This first multi-tissue study will be instrumental to map signals from genome-wide association studies onto functional genes, to discover pathways and to identify drug targets for neurological diseases.


Assuntos
Doença de Alzheimer , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Plasma/metabolismo , Locos de Características Quantitativas , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Feminino , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma , Proteômica/métodos
3.
Acta Neuropathol Commun ; 8(1): 196, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213513

RESUMO

Alpha-synuclein is the main protein component of Lewy bodies, the pathological hallmark of Parkinson's disease. However, genetic modifiers of cerebrospinal fluid (CSF) alpha-synuclein levels remain unknown. The use of CSF levels of amyloid beta1-42, total tau, and phosphorylated tau181 as quantitative traits in genetic studies have provided novel insights into Alzheimer's disease pathophysiology. A systematic study of the genomic architecture of CSF biomarkers in Parkinson's disease has not yet been conducted. Here, genome-wide association studies of CSF biomarker levels in a cohort of individuals with Parkinson's disease and controls (N = 1960) were performed. PD cases exhibited significantly lower CSF biomarker levels compared to controls. A SNP, proxy for APOE ε4, was associated with CSF amyloid beta1-42 levels (effect = - 0.5, p = 9.2 × 10-19). No genome-wide loci associated with CSF alpha-synuclein, total tau, or phosphorylated tau181 levels were identified in PD cohorts. Polygenic risk score constructed using the latest Parkinson's disease risk meta-analysis were associated with Parkinson's disease status (p = 0.035) and the genomic architecture of CSF amyloid beta1-42 (R2 = 2.29%; p = 2.5 × 10-11). Individuals with higher polygenic risk scores for PD risk presented with lower CSF amyloid beta1-42 levels (p = 7.3 × 10-04). Two-sample Mendelian Randomization revealed that CSF amyloid beta1-42 plays a role in Parkinson's disease (p = 1.4 × 10-05) and age at onset (p = 7.6 × 10-06), an effect mainly mediated by variants in the APOE locus. In a subset of PD samples, the APOE ε4 allele was associated with significantly lower levels of CSF amyloid beta1-42 (p = 3.8 × 10-06), higher mean cortical binding potentials (p = 5.8 × 10-08), and higher Braak amyloid beta score (p = 4.4 × 10-04). Together these results from high-throughput and hypothesis-free approaches converge on a genetic link between Parkinson's disease, CSF amyloid beta1-42, and APOE.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Doença de Parkinson/genética , Fragmentos de Peptídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fosforilação , alfa-Sinucleína/líquido cefalorraquidiano , alfa-Sinucleína/metabolismo , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa