Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Cell ; 169(7): 1303-1314.e18, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602352

RESUMO

Cytoplasmic dynein-1 binds dynactin and cargo adaptor proteins to form a transport machine capable of long-distance processive movement along microtubules. However, it is unclear why dynein-1 moves poorly on its own or how it is activated by dynactin. Here, we present a cryoelectron microscopy structure of the complete 1.4-megadalton human dynein-1 complex in an inhibited state known as the phi-particle. We reveal the 3D structure of the cargo binding dynein tail and show how self-dimerization of the motor domains locks them in a conformation with low microtubule affinity. Disrupting motor dimerization with structure-based mutagenesis drives dynein-1 into an open form with higher affinity for both microtubules and dynactin. We find the open form is also inhibited for movement and that dynactin relieves this by reorienting the motor domains to interact correctly with microtubules. Our model explains how dynactin binding to the dynein-1 tail directly stimulates its motor activity.


Assuntos
Dineínas do Citoplasma/química , Complexos Multiproteicos/química , Animais , Microscopia Crioeletrônica , Dineínas do Citoplasma/metabolismo , Dineínas do Citoplasma/ultraestrutura , Dimerização , Complexo Dinactina/química , Complexo Dinactina/metabolismo , Humanos , Camundongos , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Células Sf9 , Spodoptera , Suínos
2.
Epilepsia ; 65(1): 37-45, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950390

RESUMO

OBJECTIVE: In the placebo-controlled, double-blind phase of the Marigold study (NCT03572933), ganaxolone significantly reduced major motor seizure frequency (MMSF) in patients with cyclin-dependent kinase-like 5 deficiency disorder (CDD). We report 2-year safety and clinical outcomes data from the open-label extension (OLE) phase of Marigold. METHODS: Patients with CDD who completed the double-blind phase were eligible to continue in the OLE. Efficacy assessments included MMSF reduction from prerandomization baseline, responder rates, and Clinical Global Impression-Improvement scores, including assessment of seizure intensity and duration (CGI-CSID). Safety assessments included treatment-emergent adverse events (TEAEs) and TEAEs leading to discontinuation. RESULTS: Of 101 patients who enrolled in Marigold, 88 (87.1%) entered the OLE (median age = 5 years, 79.5% female). Median 28-day MMSF at baseline was 50.6. At 2 years in the OLE (months 22-24), MMSF was reduced by a median of 48.2% (n = 50); when missing data were imputed, median reduction in MMSF was 43.8% using a mixed effects model and 27.4% using a last observation carried forward model. During months 22-24, 23 of 50 (46.0%) patients experienced reductions in MMSF of ≥50%; 12 of 50 (24.0%) patients experienced MMSF reductions of ≥75%. During months 22-24, 40 of 49 (81.6%) patients were rated by caregivers as having improvement in seizure-related outcomes based on CGI-CSID scores. Thirty-seven patients discontinued ganaxolone due to lack of efficacy (n = 13), withdrawal by caregiver (n = 12), adverse event (n = 10), physician decision (n = 1), or death (n = 1; unrelated to study drug). The most common treatment-related TEAEs were somnolence (17.0%), seizure (11.4%), and decreased appetite (5.7%). Patients reported serious TEAEs (n = 28, 31.8%); those reported in ≥3% of patients were seizure (n = 6), pneumonia (n = 5), acute respiratory failure (n = 3), aspiration pneumonia (n = 3), and dehydration (n = 3). SIGNIFICANCE: Sustained reductions in MMSF at 2 years in the OLE support the efficacy of ganaxolone in seizures associated with CDD. Safety findings in the OLE were consistent with the double-blind phase.


Assuntos
Anticonvulsivantes , Epilepsia Tônico-Clônica , Síndromes Epilépticas , Pregnanolona/análogos & derivados , Espasmos Infantis , Humanos , Feminino , Pré-Escolar , Masculino , Anticonvulsivantes/efeitos adversos , Seguimentos , Resultado do Tratamento , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Epilepsia Tônico-Clônica/tratamento farmacológico , Método Duplo-Cego , Quinases Ciclina-Dependentes/uso terapêutico
3.
Eur J Neurol ; : e16324, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693756

RESUMO

Neuronal ceroid lipofuscinosis type 2 (CLN2) disease is a rare, lysosomal storage disorder that causes pediatric onset neurodegenerative disease. It is characterized by mutations in the TPP1 gene. Symptoms begin between 2 and 4 years of age with loss of previously acquired motor, cognitive, and language abilities. Cerliponase alfa, a recombinant human TPP1 enzyme, is the only approved therapy. We report the first presymptomatic cerliponase alfa intraventricular treatment in a familial case of CLN2 related to a classical TPP1 variant. Sister 1 presented with motor, cognitive, and language decline and progressive myoclonic epilepsy since the age of 3 years, evolved with severe diffuse encephalopathy, received no specific treatment, and died at 11 years. Sister 2 had a CLN2 presymptomatic diagnosis and has been treated with cerliponase since she was 12 months old. She is now 6 years 8 months and has no CLN2 symptom except one generalized seizure 1 year ago. No serious adverse event has occurred. Repeated Wechsler Preschool and Primary Scale of Intelligence, Fourth Edition standardized index scores are heterogeneous in the extremely low to low average ranges. Mean length of utterances, a global index of sentence complexity, showed a delay, but a gradual improvement. The reported case enhances the major contribution of presymptomatic diagnosis and significant middle-term treatment benefit for patients with CLN2.

4.
J Med Genet ; 60(2): 183-192, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35393335

RESUMO

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Assuntos
Epilepsia , Microcefalia , Receptores de N-Metil-D-Aspartato , Humanos , Heterozigoto , Homozigoto , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
5.
Neurobiol Dis ; 180: 106085, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933672

RESUMO

Dynein heavy chain (DYNC1H1) mutations can either lead to severe cerebral cortical malformations, or alternatively may be associated with the development of spinal muscular atrophy with lower extremity predominance (SMA-LED). To assess the origin of such differences, we studied a new Dync1h1 knock-in mouse carrying the cortical malformation p.Lys3334Asn mutation. Comparing with an existing neurodegenerative Dync1h1 mutant (Legs at odd angles, Loa, p.Phe580Tyr/+), we assessed Dync1h1's roles in cortical progenitor and especially radial glia functions during embryogenesis, and assessed neuronal differentiation. p.Lys3334Asn /+ mice exhibit reduced brain and body size. Embryonic brains show increased and disorganized radial glia: interkinetic nuclear migration occurs in mutants, however there are increased basally positioned cells and abventricular mitoses. The ventricular boundary is disorganized potentially contributing to progenitor mislocalization and death. Morphologies of mitochondria and Golgi apparatus are perturbed in vitro, with different effects also in Loa mice. Perturbations of neuronal migration and layering are also observed in p.Lys3334Asn /+ mutants. Overall, we identify specific developmental effects due to a severe cortical malformation mutation in Dync1h1, highlighting the differences with a mutation known instead to primarily affect motor function.


Assuntos
Dineínas , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Dineínas/genética , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Atrofia Muscular Espinal/genética , Tamanho do Órgão , Mutação/genética , Encéfalo/metabolismo , Células-Tronco
6.
Am J Hum Genet ; 106(6): 859-871, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32470375

RESUMO

Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD.


Assuntos
Oftalmopatias Hereditárias/genética , Proteínas de Ligação ao GTP/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação com Perda de Função , Miopia/genética , Proteínas do Tecido Nervoso/genética , Cegueira Noturna/genética , Adulto , Alelos , Processamento Alternativo , Encéfalo/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Diagnóstico Diferencial , Saúde da Família , Feminino , França , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Glucose/metabolismo , Humanos , Secreção de Insulina , Masculino , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/metabolismo , Linhagem , Retina/metabolismo , Arábia Saudita , Senegal
7.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982451

RESUMO

Cajal-Retzius cells (CRs) are a class of transient neurons in the mammalian cortex that play a critical role in cortical development. Neocortical CRs undergo almost complete elimination in the first two postnatal weeks in rodents and the persistence of CRs during postnatal life has been detected in pathological conditions related to epilepsy. However, it is unclear whether their persistence is a cause or consequence of these diseases. To decipher the molecular mechanisms involved in CR death, we investigated the contribution of the PI3K/AKT/mTOR pathway as it plays a critical role in cell survival. We first showed that this pathway is less active in CRs after birth before massive cell death. We also explored the spatio-temporal activation of both AKT and mTOR pathways and reveal area-specific differences along both the rostro-caudal and medio-lateral axes. Next, using genetic approaches to maintain an active pathway in CRs, we found that the removal of either PTEN or TSC1, two negative regulators of the pathway, lead to differential CR survivals, with a stronger effect in the Pten model. Persistent cells in this latter mutant are still active. They express more Reelin and their persistence is associated with an increase in the duration of kainate-induced seizures in females. Altogether, we show that the decrease in PI3K/AKT/mTOR activity in CRs primes these cells to death by possibly repressing a survival pathway, with the mTORC1 branch contributing less to the phenotype.


Assuntos
Ácido Caínico , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Ácido Caínico/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Convulsões/induzido quimicamente , Mamíferos/metabolismo
8.
Hum Mol Genet ; 29(5): 766-784, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31919497

RESUMO

By using the Cre-mediated genetic switch technology, we were able to successfully generate a conditional knock-in mouse, bearing the KIF2A p.His321Asp missense point variant, identified in a subject with malformations of cortical development. These mice present with neuroanatomical anomalies and microcephaly associated with behavioral deficiencies and susceptibility to epilepsy, correlating with the described human phenotype. Using the flexibility of this model, we investigated RosaCre-, NestinCre- and NexCre-driven expression of the mutation to dissect the pathophysiological mechanisms underlying neurodevelopmental cortical abnormalities. We show that the expression of the p.His321Asp pathogenic variant increases apoptosis and causes abnormal multipolar to bipolar transition in newborn neurons, providing therefore insights to better understand cortical organization and brain growth defects that characterize KIF2A-related human disorders. We further demonstrate that the observed cellular phenotypes are likely to be linked to deficiency in the microtubule depolymerizing function of KIF2A.


Assuntos
Comportamento Animal , Cinesinas/fisiologia , Malformações do Desenvolvimento Cortical/patologia , Mutação , Neurônios/patologia , Proteínas Repressoras/fisiologia , Animais , Masculino , Malformações do Desenvolvimento Cortical/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
9.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31735293

RESUMO

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Assuntos
Encefalopatias/patologia , Encéfalo/anormalidades , Deficiências do Desenvolvimento/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Adolescente , Adulto , Encefalopatias/genética , Encefalopatias/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Mitocôndrias/patologia , Oxirredução , Prognóstico , Pele/metabolismo , Pele/patologia , Tiorredoxinas/genética , Transcriptoma
10.
J Med Genet ; 58(1): 33-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32571897

RESUMO

BACKGROUND: Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. METHODS: In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. RESULTS: We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. CONCLUSION: The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Polimicrogiria/genética , Tubulina (Proteína)/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Vermis Cerebelar/diagnóstico por imagem , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/patologia , Neuroimagem/métodos , Fenótipo , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/patologia , Tubulina (Proteína)/deficiência , Adulto Jovem
11.
Genet Med ; 23(11): 2160-2170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34234304

RESUMO

PURPOSE: Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS: We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS: We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION: A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.


Assuntos
Ataxia Cerebelar , Genômica , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Humanos , Peroxinas , Receptores Citoplasmáticos e Nucleares , Estados Unidos , Sequenciamento do Exoma
12.
Epilepsia ; 62(2): 325-334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410528

RESUMO

OBJECTIVE: Asparagine-linked glycosylation 13 (ALG13) deficiencies have been repeatedly described in the literature with the clinical phenotype of a developmental and epileptic encephalopathy (DEE). Most cases were females carrying the recurrent ALG13 de novo variant, p.(Asn107Ser), with normal transferrin electrophoresis. METHODS: We delineate the phenotypic spectrum of 38 individuals, 37 girls and one boy, 16 of them novel and 22 published, with the most common pathogenic ALG13 variant p.(Asn107Ser) and additionally report the phenotype of three individuals carrying other likely pathogenic ALG13 variants. RESULTS: The phenotypic spectrum often comprised pharmacoresistant epilepsy with epileptic spasms, mostly with onset within the first 6 months of life and with spasm persistence in one-half of the cases. Tonic seizures were the most prevalent additional seizure type. Electroencephalography showed hypsarrhythmia and at a later stage of the disease in one-third of all cases paroxysms of fast activity with electrodecrement. ALG13-related DEE was usually associated with severe to profound developmental delay; ambulation was acquired by one-third of the cases, whereas purposeful hand use was sparse or completely absent. Hand stereotypies and dyskinetic movements including dystonia or choreoathetosis were relatively frequent. Verbal communication skills were absent or poor, and eye contact and pursuit were often impaired. SIGNIFICANCE: X-linked ALG13-related DEE usually manifests as West syndrome with severe to profound developmental delay. It is predominantly caused by the recurrent de novo missense variant p.(Asn107Ser). Comprehensive functional studies will be able to prove or disprove an association with congenital disorder of glycosylation.


Assuntos
Deficiências do Desenvolvimento/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , N-Acetilglucosaminiltransferases/genética , Espasmos Infantis/fisiopatologia , Hormônio Adrenocorticotrópico/uso terapêutico , Anticonvulsivantes/uso terapêutico , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Dieta Cetogênica , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/terapia , Discinesias/genética , Discinesias/fisiopatologia , Eletroencefalografia , Síndromes Epilépticas/genética , Síndromes Epilépticas/fisiopatologia , Síndromes Epilépticas/terapia , Feminino , Glucocorticoides/uso terapêutico , Hormônios/uso terapêutico , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Fenótipo , Comportamento Social , Espasmos Infantis/genética
13.
Semin Cell Dev Biol ; 76: 33-75, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28951247

RESUMO

Cerebral cortical development involves a complex series of highly regulated steps to generate the laminated structure of the adult neocortex. Neuronal migration is a key part of this process. We provide here a detailed review of cortical malformations thought to be linked to abnormal neuronal migration. We have focused on providing updated views related to perturbed mechanisms based on the wealth of genetic information currently available, as well as the study of mutant genes in animal models. We discuss mainly type 1 lissencephaly, periventricular heterotopia, type II lissencephaly and polymicrogyria. We also discuss functional classifications such as the tubulinopathies, and emphasize how modern genetics is revealing genes mutated in atypical cases, as well as unexpected genes for classical cases. A role in neuronal migration is revealed for many mutant genes, although progenitor abnormalities also predominate, depending on the disorder. We finish by describing the advantages of human in vitro cell culture models, to examine human-specific cells and transcripts, and further mention non-genetic mechanisms leading to cortical malformations.


Assuntos
Malformações do Desenvolvimento Cortical do Grupo I/genética , Humanos
14.
Hum Mol Genet ; 27(2): 224-238, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29077851

RESUMO

Genetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation. Interestingly, further dissection of this latter process revealed that ciliogenesis regulation is also altered during progenitors cell cycle. Altogether, our data suggest that deregulation of the coupling between ciliogenesis and cell cycle might contribute to the pathogenesis of KIF2A-related brain malformations. They also raise the issue whether ciliogenesis defects are a hallmark of other brain malformations, such as those related to tubulins and MT-motor proteins variants.


Assuntos
Cílios/genética , Cinesinas/metabolismo , Malformações do Desenvolvimento Cortical/genética , Proteínas Repressoras/metabolismo , Animais , Encéfalo/metabolismo , Ciclo Celular/genética , Cílios/fisiologia , Células HeLa , Humanos , Cinesinas/genética , Malformações do Desenvolvimento Cortical/metabolismo , Camundongos , Microcefalia/metabolismo , Microtúbulos/metabolismo , Neurogênese , Proteínas Repressoras/genética , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
15.
Brain ; 142(10): 2996-3008, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532509

RESUMO

Epilepsy of infancy with migrating focal seizures was first described in 1995. Fifteen years later, KCNT1 gene mutations were identified as the major disease-causing gene of this disease. Currently, the data on epilepsy of infancy with migrating focal seizures associated with KCNT1 mutations are heterogeneous and many questions remain unanswered including the prognosis and the long-term outcome especially regarding epilepsy, neurological and developmental status and the presence of microcephaly. The aim of this study was to assess data from patients with epilepsy in infancy with migrating focal seizures with KCNT1 mutations to refine the phenotype spectrum and the outcome. We used mind maps based on medical reports of children followed in the network of the French reference centre for rare epilepsies and we developed family surveys to assess the long-term outcome. Seventeen patients were included [age: median (25th-75th percentile): 4 (2-15) years, sex ratio: 1.4, length of follow-up: 4 (2-15) years]. Seventy-one per cent started at 6 (1-52) days with sporadic motor seizures (n = 12), increasing up to a stormy phase with long lasting migrating seizures at 57 (30-89) days. The others entered this stormy phase directly at 1 (1-23) day. Ten patients entered a consecutive phase at 1.3 (1-2.8) years where seizures persisted at least daily (n = 8), but presented different semiology: brief and hypertonic with a nocturnal (n = 6) and clustered (n = 6) aspects. Suppression interictal patterns were identified on the EEG in 71% of patients (n = 12) sometimes from the first EEG (n = 6). Three patients received quinidine without reported efficacy. Long-term outcome was poor with neurological sequelae and active epilepsy except for one patient who had an early and long-lasting seizure-free period. Extracerebral symptoms probably linked with KCNT1 mutation were present, including arteriovenous fistula, dilated cardiomyopathy and precocious puberty. Eight patients (47%) had died at 3 (1.5-15.4) years including three from suspected sudden unexpected death in epilepsy. Refining the electro-clinical characteristics and the temporal sequence of epilepsy in infancy with migrating focal seizures should help diagnosis of this epilepsy. A better knowledge of the outcome allows one to advise families and to define the appropriate follow-up and therapies. Extracerebral involvement should be investigated, in particular the cardiac system, as it may be involved in the high prevalence of sudden unexpected death in epilepsy in these cases.


Assuntos
Epilepsias Parciais/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Morte Súbita Inesperada na Epilepsia , Adolescente , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsias Parciais/metabolismo , Feminino , Humanos , Estudos Longitudinais , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo
16.
Brain ; 142(4): 867-884, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879067

RESUMO

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Adulto , Encéfalo/patologia , Proteínas de Transporte/genética , Ciclo Celular/fisiologia , Cílios/metabolismo , Feminino , Estudos de Associação Genética/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Recém-Nascido , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Microcefalia/genética , Mutação , Malformações do Sistema Nervoso/genética , Polimicrogiria/etiologia , Polimicrogiria/patologia
17.
Am J Med Genet C Semin Med Genet ; 181(4): 627-637, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31710781

RESUMO

EML1 encodes the protein Echinoderm microtubule-associated protein-like 1 or EMAP-1 that binds to the microtubule complex. Mutations in this gene resulting in complex brain malformations have only recently been published with limited clinical descriptions. We provide further clinical and imaging details on three previously published families, and describe two novel unrelated individuals with a homozygous partial EML1 deletion and a homozygous missense variant c.760G>A, p.(Val254Met), respectively. From review of the clinical and imaging data of eight individuals from five families with biallelic EML1 variants, a very consistent imaging phenotype emerges. The clinical syndrome is characterized by mainly neurological features including severe developmental delay, drug-resistant seizures and visual impairment. On brain imaging there is megalencephaly with a characteristic ribbon-like subcortical heterotopia combined with partial or complete callosal agenesis and an overlying polymicrogyria-like cortical malformation. Several of its features can be recognized on prenatal imaging especially the abnormaly formed lateral ventricles, hydrocephalus (in half of the cases) and suspicion of a neuronal migration disorder. In conclusion, biallelic EML1 disease-causing variants cause a highly specific pattern of congenital brain malformations, severe developmental delay, seizures and visual impairment.


Assuntos
Encéfalo/patologia , Proteínas Associadas aos Microtúbulos/genética , Humanos , Malformações do Desenvolvimento Cortical do Grupo II/genética , Mutação de Sentido Incorreto , Deleção de Sequência
18.
Am J Hum Genet ; 98(5): 993-1000, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27132592

RESUMO

Mitochondrial disorders are clinically and genetically diverse, with mutations in mitochondrial or nuclear genes able to cause defects in mitochondrial gene expression. Recently, mutations in several genes encoding factors involved in mt-tRNA processing have been identified to cause mitochondrial disease. Using whole-exome sequencing, we identified mutations in TRMT10C (encoding the mitochondrial RNase P protein 1 [MRPP1]) in two unrelated individuals who presented at birth with lactic acidosis, hypotonia, feeding difficulties, and deafness. Both individuals died at 5 months after respiratory failure. MRPP1, along with MRPP2 and MRPP3, form the mitochondrial ribonuclease P (mt-RNase P) complex that cleaves the 5' ends of mt-tRNAs from polycistronic precursor transcripts. Additionally, a stable complex of MRPP1 and MRPP2 has m(1)R9 methyltransferase activity, which methylates mt-tRNAs at position 9 and is vital for folding mt-tRNAs into their correct tertiary structures. Analyses of fibroblasts from affected individuals harboring TRMT10C missense variants revealed decreased protein levels of MRPP1 and an increase in mt-RNA precursors indicative of impaired mt-RNA processing and defective mitochondrial protein synthesis. The pathogenicity of the detected variants-compound heterozygous c.542G>T (p.Arg181Leu) and c.814A>G (p.Thr272Ala) changes in subject 1 and a homozygous c.542G>T (p.Arg181Leu) variant in subject 2-was validated by the functional rescue of mt-RNA processing and mitochondrial protein synthesis defects after lentiviral transduction of wild-type TRMT10C. Our study suggests that these variants affect MRPP1 protein stability and mt-tRNA processing without affecting m(1)R9 methyltransferase activity, identifying mutations in TRMT10C as a cause of mitochondrial disease and highlighting the importance of RNA processing for correct mitochondrial function.


Assuntos
Genes Recessivos/genética , Metiltransferases/genética , Doenças Mitocondriais/etiologia , Mutação/genética , Processamento Pós-Transcricional do RNA/genética , RNA/genética , Ribonuclease P/genética , Sequência de Aminoácidos , Transporte de Elétrons/genética , Feminino , Humanos , Recém-Nascido , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Linhagem , Biossíntese de Proteínas/fisiologia , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência/genética , Homologia de Sequência de Aminoácidos
19.
Am J Hum Genet ; 98(5): 971-980, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27108797

RESUMO

Gillespie syndrome (GS) is a rare variant form of aniridia characterized by non-progressive cerebellar ataxia, intellectual disability, and iris hypoplasia. Unlike the more common dominant and sporadic forms of aniridia, there has been no significant association with PAX6 mutations in individuals with GS and the mode of inheritance of the disease had long been regarded as uncertain. Using a combination of trio-based whole-exome sequencing and Sanger sequencing in five simplex GS-affected families, we found homozygous or compound heterozygous truncating mutations (c.4672C>T [p.Gln1558(∗)], c.2182C>T [p.Arg728(∗)], c.6366+3A>T [p.Gly2102Valfs5(∗)], and c.6664+5G>T [p.Ala2221Valfs23(∗)]) and de novo heterozygous mutations (c.7687_7689del [p.Lys2563del] and c.7659T>G [p.Phe2553Leu]) in the inositol 1,4,5-trisphosphate receptor type 1 gene (ITPR1). ITPR1 encodes one of the three members of the IP3-receptors family that form Ca(2+) release channels localized predominantly in membranes of endoplasmic reticulum Ca(2+) stores. The truncation mutants, which encompass the IP3-binding domain and varying lengths of the modulatory domain, did not form functional channels when produced in a heterologous cell system. Furthermore, ITPR1 p.Lys2563del mutant did not form IP3-induced Ca(2+) channels but exerted a negative effect when co-produced with wild-type ITPR1 channel activity. In total, these results demonstrate biallelic and monoallelic ITPR1 mutations as the underlying genetic defects for Gillespie syndrome, further extending the spectrum of ITPR1-related diseases.


Assuntos
Aniridia/etiologia , Ataxia Cerebelar/etiologia , Genes Dominantes/genética , Genes Recessivos/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Deficiência Intelectual/etiologia , Mutação/genética , Adolescente , Aniridia/patologia , Ataxia Cerebelar/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/patologia , Masculino , Linhagem
20.
Mol Genet Metab ; 127(2): 147-157, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182398

RESUMO

BACKGROUND: HPRT deficiency is a rare disorder of purine metabolism whose natural history is not fully understood. No optimal management recommendations exist. The objective of the present study is to characterize a large cohort of patients with HPRT deficiency, comparing Lesch-Nyhan Disease (LND) and its attenuated variants, with the purpose of helping clinicians in disease management and prognostic definition. METHODS: Genetic and clinical features of French and Italian patients with a confirmed diagnosis of HPRT deficiency were collected. RESULTS: A hundred and one patients were studied, including 66 LND, 22 HND (HPRT-related Neurological Dysfunction) and 13 HRH (HPRT-Related Hyperuricemia) patients. The clinical manifestations at onset were not specific, but associated with an orange coloration of diapers in 22% of patients. The overall neurological involvement was more severe in LND than in HND patients. Behavioural disturbances were not limited to self-injuries and were not exclusive of LND. Median age of involuntary movements and self-injuries appearance in LND was 1.0 and 3 years, respectively. Renal manifestations (66.3% of patients) occurred at any age with a median onset age of 1.1 years, while gout (25.7% of patients) appeared later in disease course (median onset age 18 years) and was more frequent in attenuated variants than in LND. HPRT activity and genotype showed a significant correlation with the severity of the neurological disease. On the contrary, there were no significant differences in the development of nephropathy or gout. For the treatment of neurological aspects, botulinum toxin injections, oral or intrathecal baclofen and gabapentin were partially efficacious and well tolerated, while deep brain stimulation was associated to a worsening of patients' condition. CONCLUSIONS: The present study improves the knowledge of the natural history of HPRT deficiency and could represent a starting point for the development of future management guidelines.


Assuntos
Hipoxantina Fosforribosiltransferase/deficiência , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan/genética , Adolescente , Adulto , Criança , Gerenciamento Clínico , Feminino , França , Humanos , Itália , Síndrome de Lesch-Nyhan/complicações , Síndrome de Lesch-Nyhan/diagnóstico , Masculino , Mutação , Prognóstico , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa