Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(2): 427-445, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32683534

RESUMO

Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and physiological contexts.


Assuntos
Histona Desacetilases/metabolismo , Animais , Ativação Enzimática , Estabilidade Enzimática , Histona Desacetilases/análise , Histonas/metabolismo , Humanos , Mitose , Fosforilação , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
2.
Nucleic Acids Res ; 44(22): e161, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27576531

RESUMO

We introduce RNA2DNAlign, a computational framework for quantitative assessment of allele counts across paired RNA and DNA sequencing datasets. RNA2DNAlign is based on quantitation of the relative abundance of variant and reference read counts, followed by binomial tests for genotype and allelic status at SNV positions between compatible sequences. RNA2DNAlign detects positions with differential allele distribution, suggesting asymmetries due to regulatory/structural events. Based on the type of asymmetry, RNA2DNAlign outlines positions likely to be implicated in RNA editing, allele-specific expression or loss, somatic mutagenesis or loss-of-heterozygosity (the first three also in a tumor-specific setting). We applied RNA2DNAlign on 360 matching normal and tumor exomes and transcriptomes from 90 breast cancer patients from TCGA. Under high-confidence settings, RNA2DNAlign identified 2038 distinct SNV sites associated with one of the aforementioned asymetries, the majority of which have not been linked to functionality before. The performance assessment shows very high specificity and sensitivity, due to the corroboration of signals across multiple matching datasets. RNA2DNAlign is freely available from http://github.com/HorvathLab/NGS as a self-contained binary package for 64-bit Linux systems.


Assuntos
Análise de Sequência de DNA , Análise de Sequência de RNA , Software , Algoritmos , Alelos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Exoma , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Perda de Heterozigosidade , Polimorfismo de Nucleotídeo Único , Edição de RNA , Sensibilidade e Especificidade , Transcriptoma
3.
Cell Death Dis ; 12(5): 469, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976119

RESUMO

HDAC1 is the prototypical human histone deacetylase (HDAC) enzyme responsible for catalyzing the removal of acetyl group from lysine residues on many substrate proteins. By deacetylating histones and non-histone proteins, HDAC1 has a profound effect on the regulation of gene transcription and many processes related to cell growth and cell death, including cell cycle progression, DNA repair, and apoptosis. Early studies reveal that, like most eukaryotic proteins, the functions and activities of HDAC1 are regulated by post-translational modifications. For example, serine phosphorylation of HDAC1 by protein kinase CK2 promotes HDAC1 deacetylase enzymatic activity and alters its interactions with proteins in corepressor complexes. Here, we describe an alternative signaling pathway by which HDAC1 activities are regulated. Specifically, we discover that EGFR activity promotes the tyrosine phosphorylation of HDAC1, which is necessary for its protein stability. A key EGFR phosphorylation site on HDAC1, Tyr72, mediates HDAC1's anti-apoptotic function. Given that HDAC1 overexpression and EGFR activity are strongly related with tumor progression and cancer cell survival, HDAC1 tyrosine phosphorylation may present a possible target to manipulate HDAC1 protein levels in future potential cancer treatment strategies.


Assuntos
Apoptose/genética , Histona Desacetilase 1/metabolismo , Receptores ErbB/metabolismo , Humanos , Fosforilação , Transfecção
4.
Genes Cancer ; 10(5-6): 119-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798765

RESUMO

Temozolomide (TMZ) is an alkylating agent chemotherapy drug used as a first-line treatment for glioblastoma multiforme (GBM). O6-methyl-guanine DNA methyltransferase (MGMT) repairs DNA damage induced by TMZ; hence, elevated MGMT levels usually correlate with TMZ resistance. MGMT promoter methylation is a key regulatory mechanism for MGMT expression and is important in overcoming TMZ therapy resistance. To date, little is known about how MGMT expression is regulated beyond promoter methylation. In this work, we show an alternative mechanism by which MGMT levels are regulated independent of its promoter methylation status. We found that inhibition of the histone deacetylase HDAC8 by either HDAC8-specific inhibitor PCI34051 or HDAC8 shRNA decreases MGMT levels in GBM cell lines. Furthermore, the proteasome receptor ADRM1 participates in this MGMT regulation by interacting with HDAC8. Interestingly, this interaction is disrupted by TMZ exclusively in TMZ sensitive cells, suggesting that this MGMT regulatory pathway might be inactivated in TMZ resistant cells. Consequently, HDAC8 inhibition in GBM cell lines increases DNA damage and cell cycle arrest and, eventually, decreases cell viability, likely due to the decrease in MGMT protein levels.

5.
Sci Rep ; 7(1): 8287, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811643

RESUMO

Asymmetric allele content in the transcriptome can be indicative of functional and selective features of the underlying genetic variants. Yet, imbalanced alleles, especially from diploid genome regions, are poorly explored in cancer. Here we systematically quantify and integrate the variant allele fraction from corresponding RNA and DNA sequence data from patients with breast cancer acquired through The Cancer Genome Atlas (TCGA). We test for correlation between allele prevalence and functionality in known cancer-implicated genes from the Cancer Gene Census (CGC). We document significant allele-preferential expression of functional variants in CGC genes and across the entire dataset. Notably, we find frequent allele-specific overexpression of variants in tumor-suppressor genes. We also report a list of over-expressed variants from non-CGC genes. Overall, our analysis presents an integrated set of features of somatic allele expression and points to the vast information content of the asymmetric alleles in the cancer transcriptome.


Assuntos
Alelos , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Elementos de Resposta , Feminino , Perfilação da Expressão Gênica , Variação Genética , Genótipo , Humanos , Mutação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa