RESUMO
Hole transporting layers (HTLs), strategically positioned between electrode and light absorber, play a pivotal role in shaping charge extraction and transport in organic solar cells (OSCs). However, the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, with its hygroscopic and acidic nature, undermines the operational durability of OSC devices. Herein, an environmentally friendly approach is developed utilizing nickel acetate tetrahydrate (NiAc·4H2O) and [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz) as the NiAc·4H2O/2PACz HTL, aiming at overcoming the limitations posed by the conventional PEDOT:PSS one. Encouragingly, a remarkable power conversion efficiency (PCE) of 19.12% is obtained for the OSCs employing NiAc·4H2O/2PACz as the HTL, surpassing that of devices with the PEDOT:PSS HTL (17.59%), which is ranked among the highest ones of OSCs. This improvement is attributed to the appropriate work function, enhanced hole mobility, facilitated exciton dissociation efficiency, and lower recombination loss of NiAc·4H2O/2PACz-based devices. Furthermore, the NiAc·4H2O/2PACz-based OSCs exhibit superior operational stability compared to their PEDOT:PSS-based counterparts. Of significant note, the NiAc·4H2O/2PACz HTL demonstrates a broad generality, boosting the PCE of the PM6:PY-IT and PM6:Y6-based OSCs from 16.47% and 16.79% (with PEDOT:PSS-based analogs as HTLs) to 17.36% and 17.57%, respectively. These findings underscore the substantial potential of the NiAc·4H2O/2PACz HTL in advancing OSCs, offering improved performance and stability, thereby opening avenue for highly efficient and reliable solar energy harvesting technologies.
RESUMO
The excessive and prolonged use of antibiotics contributes to the emergence of drug-resistant S. aureus strains and potential dysbacteriosis-related diseases, necessitating the exploration of alternative therapeutic approaches. Herein, we present a light-activated nanocatalyst for synthesizing in situ antimicrobials through photoredox-catalytic click reaction, achieving precise, site-directed elimination of S. aureus skin infections. Methylene blue (MB), a commercially available photosensitizer, was encapsulated within the CuII-based metal-organic framework, MOF-199, and further enveloped with Pluronic F-127 to create the light-responsive nanocatalyst MB@PMOF. Upon exposure to red light, MB participates in a photoredox-catalytic cycle, driven by the 1,3,5-benzenetricarboxylic carboxylate salts (BTC-) ligand presented in the structure of MOF-199. This light-activated MB then catalyzes the reduction of CuII to CuI through a single-electron transfer (SET) process, efficiently initiating the click reaction to form active antimicrobial agents under physiological conditions. Both in vitro and in vivo results demonstrated the effectiveness of MB@PMOF-catalyzed drug synthesis in inhibiting S. aureus, including their methicillin-resistant strains, thereby accelerating skin healing in severe bacterial infections. This study introduces a novel design paradigm for controlled, on-site drug synthesis, offering a promising alternative to realize precise treatment of bacterial infections without undesirable side effects.
Assuntos
Antibacterianos , Química Click , Luz , Staphylococcus aureus , Catálise , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Oxirredução , Cobre/química , Cobre/farmacologia , Processos Fotoquímicos , Testes de Sensibilidade Microbiana , Azul de Metileno/química , Azul de Metileno/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/síntese química , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese químicaRESUMO
Elucidating the intrinsic relationship between mitochondrial pH (pHm) fluctuation and lipid droplets (LDs) formation is vital in cell physiology. The development of small-molecular fluorescent probes for discrimination and simultaneous visualization of pHm fluctuation toward LDs has not yet been reported. In this work, utilizing pH-driven polarity-reversible hemicyanine and rhodamine derivatives, a multifunctional fluorescent probe is developed for selectively identifying mitochondria and LDs under specific pH values via dual-emission channels. This rapid-response probe, Hcy-Rh, has two distinct chemical structures under acidic and alkaline circumstances. In acidic conditions, Hcy-Rh exhibits good hydrophilicity that can target mitochondria and display an intense red fluorescence. Conversely, the probe becomes lipophilic under weakly alkaline conditions and targets LDs, showing a strong blue emission. In this manner, Hcy-Rh can selectively label mitochondria and LDs, exhibiting red and blue fluorescence, respectively. Moreover, this ratiometric probe is applied to map pHm changes in living cells under the stimulus with FCCP, NAC, and H2O2. The interplay of LD-mitochondria under oleic acid treatment and starvation-induced autophagy has been studied using this probe at different pH values. In a word, Hcy-Rh is a potential candidate for further exploring mitochondria-LD interaction mechanisms under pHm fluctuation. Moreover, the polarity-dependent strategy is valuable for designing other functional biological probes in imaging multiple organelles.
Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Corantes Fluorescentes/química , Células HeLa , Humanos , Peróxido de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Gotículas Lipídicas/metabolismo , Mitocôndrias/químicaRESUMO
BACKGROUND: Recent studies have reported that receptor-interacting protein kinase 3 (RIPK3)-dependent necroptosis is related to the pathological process of intracerebral hemorrhage (ICH). Some studies support the view that inhibiting necroptosis is a key mechanism preventing inflammation. Inflammation is a crucial factor contributing to neurological injuries and unfavorable outcomes after ICH. The aim of this study was to clarify the association between necroptosis and monocyte chemoattractant protein-1 (MCP-1)-mediated inflammation and identify a new target for the treatment of ICH. METHODS: An ICH model was established in C57BL/6 mice by injecting collagenase IV into the right basal ganglia. The RIPK3 inhibitor GSK872 was administered through intraventricular injection. Then, we assessed brain edema and neurobehavioral function. Western blotting was employed to detect changes in RIPK3, phospho-mixed lineage kinase domain-like protein (p-MLKL), MCP-1, phospho-c-Jun N-terminal kinase (p-JNK) and interleukin 6 (IL-6) levels in the brain tissue. The localization of RIPK3 and MCP-1 was observed using immunofluorescence staining. Co-immunoprecipitation was performed to determine the interaction between RIPK3 and MCP-1. RESULTS: Compared with the sham group, the levels of RIPK3, p-MLKL, MCP-1, p-JNK and IL-6 were increased post-ICH. GSK872 pretreatment significantly reduced RIPK3, p-MLKL, MCP-1, p-JNK and IL-6 expression, accompanied by mitigated cerebral edema and neurobehavioral defects. RIPK3 and MCP-1 colocalized in the perinuclear region after ICH. We detected the formation of the RIPK3-MCP-1 complex in ICH brain tissue. CONCLUSIONS: There exerted an association between RIPK3 and MCP-1. The inhibition of RIPK3 alleviated MCP-1-mediated inflammation following ICH.
Assuntos
Hemorragia Cerebral/complicações , Quimiocina CCL2 , Inflamação , Necroptose/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Edema Encefálico/etiologia , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismoRESUMO
This study aims to explore the mechanism on how aggressive interaction alters reproductive physiology by testing whether aggressive interaction can activate the reproductive neuroendocrine function via the hypothalamus-pituitary-gonadal (HPG) axis in black rockfish (Sebastes schlegelii). The expressions of the androgen receptor gene (ar) and gonadotropin-releasing hormone genes (gnrhs), the concentration of plasma androgens, and GSI (the ratio of testes mass to body mass) were compared between the interaction group (dominant males or subordinate males) and the isolation group in male black rockfish after 3 weeks. A full-length cDNA encoding an androgen receptor (AR) of 766 amino acids was isolated. Transcripts encoding this AR were detected at a high relative abundance in the liver, kidney, testis, ovary, muscle, and intestine tissue. Further evaluation of brain genes transcripts abundance revealed that the mRNA levels of gnrh I and ar genes were significantly different between the interaction group and the isolation group in the hypothalamus. However, no significant difference was detected in testosterone, 11-keto-testosterone, and GSI between these two groups. This study indicates that a long-term aggressive interaction affect the expression of hypothalamic gnrh I and ar but may not change the physiological function of the HPG axis in an all-male condition.
Assuntos
Agressão , Comportamento Animal , Proteínas de Peixes/genética , Hipotálamo/metabolismo , Perciformes/genética , Receptores Androgênicos/genética , Animais , Feminino , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Perciformes/sangue , Receptores Androgênicos/metabolismo , Reprodução , Fatores Sexuais , Testosterona/análogos & derivados , Testosterona/sangue , Fatores de TempoRESUMO
Long noncoding RNAs (lncRNAs) are recently recognized as noteworthy regulators of different tumors, counting gastric cancer (GC). Lately, long intergenic noncoding RNA (LINC) 00665 has been verified to display significant parts in several cancers. Be that as it may, its role and mechanism in GC movement still stay uninvestigated. As of now, we observed LINC00665 was obviously GC cells (MKN28, BGC-823, SGC7-901, AGS, HGC-27) in comparison to GES-1 cells, which was identified as human normal gastric epithelial cells. Then, LINC00665 was obviously downregulated in GC cells including AGS and BGC-823 cells. Loss of LINC00665 greatly repressed AGS and BGC-823 cell survival and cell expansion. Moreover, GC cell apoptosis was significantly induced by the loss of LINC00665. For another, we found that the GC cell cycle was also captured in G1 and G2 phases. The experiments on cell migration and invasion indicated that knockdown of LINC00665 restrained GC cell migration and invasion. Modifications in Wnt signaling are closely associated with the development of cancers. Here, we found that Wnt signaling was significantly inactivated by the silence of LINC00665 in GC cells. ß-catenin and cyclinD1 were restrained whereas GSK-3ß was induced by the inhibition of LINC00665 in GC cells. Furthermore, we confirmed the impact of LINC00665 in vivo using xenograft models. Taken these together, we indicated that LINC00665 could function as a novel biomarker in GC progression.
Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genéticaRESUMO
Melatonin (MT; N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that has been demonstrated to play an important role in plant growth, development, and regulation of environmental stress responses. Studies have been conducted on the role of the exogenous application of MT in a few species, but the potential mechanisms of MT-mediated stress tolerance under salt stress are still largely unknown. In this study, naked oat seedlings under salt stress (150 mM NaCl) were pretreated with two different concentrations of MT (50 and 100 µM), and the effects of MT on the growth and antioxidant capacity of naked oat seedlings were analyzed to explore the regulatory effect of MT on salt tolerance. The results showed that pretreating with different concentrations of MT promoted the growth of seedlings in response to 150 mM NaCl. Different concentrations of MT reduced hydrogen peroxide, superoxide anion, and malondialdehyde contents. The exogenous application of MT also increased superoxide dismutase, peroxidase, catalase, and ascorbate peroxide activities. Chlorophyll content, leaf area, leaf volume, and proline increased in the leaves of naked oat seedlings under 150 mM NaCl stress. MT upregulated the expression levels of the lipid peroxidase genes lipoxygenase and peroxygenase, a chlorophyll biosynthase gene (ChlG), the mitogen-activated protein kinase genes Asmap1 and Aspk11, and the transcription factor genes (except DREB2), NAC, WRKY1, WRKY3, and MYB in salt-exposed MT-pretreated seedlings when compared with seedlings exposed to salt stress alone. These results demonstrate an important role of MT in the relief of salt stress and, therefore, provide a reference for managing salinity in naked oat.
Assuntos
Antioxidantes/farmacologia , Avena/crescimento & desenvolvimento , Melatonina/farmacologia , Proteínas de Plantas/genética , Tolerância ao Sal , Avena/efeitos dos fármacos , Avena/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxidos/metabolismoRESUMO
Melatonin (N-acetyl-5-methoxytryptamine, MT) is a molecule with pleiotropic effects including antioxidant activity, regulated plant growth, development, and reduced environmental stress in plants. However, only a few studies have analyzed the effect of exogenous MT on drought stress in naked oat seedlings. Therefore, in this study, we studied the effects of exogenous MT on the antioxidant capacity of naked oat under drought stress to understand the possible antioxidant mechanism. The results showed that a pretreatment of 100 µM MT reduced the hydrogen peroxide (H2O2) and superoxide anion (O2−â¢) contents. MT also enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activities in the leaves of naked oat seedlings under 20% PEG-6000 drought stress. MT upregulated the expression levels of the mitogen-activated protein kinases (MAPKs) Asmap1 and Aspk11, and the transcription factor (TF) genes (except for NAC), WRKY1, DREB2, and MYB increased in drought with MT pretreatment seedlings when compared with seedlings exposed to drought stress alone. These data indicated that the MT-mediated induction of the antioxidant response may require the activation of reactive oxygen species (ROS) and MAPK, followed by triggering a downstream MAPK cascade such as Asmap1 and Aspk11, to regulate the expression of antioxidant-related genes. This study demonstrated that MT could induce the expression of MAPKs and TFs and regulate the expression of downstream stress-responsive genes, thereby increasing the plant's tolerance. This may provide a new idea for MT modulation in the regulation of plant antioxidant defenses. These results provide a theoretical basis for MT to alleviate drought stress in naked oat.
Assuntos
Antioxidantes/farmacologia , Avena/efeitos dos fármacos , Avena/metabolismo , Secas , Melatonina/farmacologia , Plântula/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Avena/crescimento & desenvolvimento , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas , Sistema de Sinalização das MAP Quinases , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismoRESUMO
Tegillarca granosa can survive intermittent hypoxia for a long-term. We used the clam T. granosa as model to investigate the respiratory, antioxidant and metabolic responses to consecutive hypoxia-reoxygenation (H/R) stress at both physiological and transcriptional levels. The results showed that the clams were able to rapidly regulate oxygen consumption and ammonia excretion during H/R stress, and alleviate oxidative stress during the second-time challenge. The clams also efficiently balanced energy metabolism through the rapid conversion and decomposition of glycogen. According to the transcriptome profile, KEGG pathways of starch and sucrose metabolism, ECM-receptor interaction, and protein processing in endoplasmic reticulum were significantly enriched in H group (the second-time 24 h hypoxia exposure), while pathways associated with lipid metabolism were significantly enriched in h group (the first-time 24 h hypoxia exposure). DEGs including hspa5, birc2/3, and map3k5 might play important roles in alleviating endoplasmic reticulum stress, cpla2 and pla2g16 might mitigate oxidative stress by adjusting the composition of cellular membrane. In conclusions, our findings suggest that rapid adjustment of oxygen consumption, ammonia metabolism, glycogen metabolism, and the ability to adjust the composition of the membrane lipid may be critical for T. granosa in maintaining energy homeostasis and reducing oxidative damage during intermittent H/R exposure. This study preliminarily clarified the response of T. granosa to intermittent hypoxia stress on the physiological and molecular levels, offering insights into the hypoxia-tolerant mechanisms in this species and providing a reference for the following study on the other hypoxic-tolerant species.
Assuntos
Antioxidantes , Transcriptoma , Animais , Antioxidantes/metabolismo , Hipóxia/metabolismo , Adaptação Fisiológica , Estresse Oxidativo , Metabolismo Energético , Bivalves/metabolismo , Bivalves/genética , Consumo de OxigênioRESUMO
BACKGROUND: Necroptosis induced by receptor-interacting protein kinase 3 (RIPK3) is engaged in intracerebral hemorrhage (ICH) pathology. In this study, we explored the impact of RIPK3 activation on neuronal necroptosis and the mechanism of the death domain-associated protein (DAXX)-mediated nuclear necroptosis pathway after ICH. METHODS: Potential molecules linked to the progression of ICH were discovered using RNA sequencing. The level of DAXX was assessed by quantitative real-time PCR, ELISA, and western blotting. DAXX localization was determined by immunofluorescence and immunoprecipitation assays. The RIPK3 inhibitor GSK872 and DAXX knockdown with shRNA-DAXX were used to examine the nuclear necroptosis pathway associated with ICH. Neurobehavioral deficit assessments were performed. RESULTS: DAXX was increased in patients and mice after ICH. In an ICH mouse model, shRNA-DAXX reduced brain water content and alleviated neurologic impairments. GSK872 administration reduced the expression of DAXX. shRNA-DAXX inhibited the expression of p-MLKL. Immunofluorescence and immunoprecipitation assays showed that RIPK3 and AIF translocated into the nucleus and then bound with nuclear DAXX. CONCLUSIONS: RIPK3 revitalization promoted neuronal necroptosis in ICH mice, partially through the DAXX signaling pathway. RIPK3 and AIF interacted with nuclear DAXX to aggravate ICH injury.
Assuntos
Necroptose , Proteínas Quinases , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Hemorragia Cerebral , Proteínas Correpressoras/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , RNA Interferente Pequeno/genéticaRESUMO
In the past decades, immunotherapy has achieved a series of clinical successes in the field of cancer. However, existing therapeutic options usually show a low immune response to solid tumors caused by immunosuppressive "cold" tumor microenvironment (TME). Several types of proinflammatory regulated cell death (RCD), mainly including ferroptosis and pyroptosis, have been studied recently, which can provide proinflammatory signals and immunogenicity necessary for remodeling TME and activating an antitumor immune response. A variety of chemotherapeutic drugs are proven to be effective in the proinflammatory RCD induction of tumor cells, but several adverse effects and intrinsic drug resistance usually occur in the therapeutic process, greatly hindering their further clinical application. The emerging organic photosensitizer (PS)-based materials open new possibilities to effectively activate proinflammatory RCD through precise spatiotemporal regulation of intracellular reactive oxygen species-associated signaling pathways, which can overcome many challenges encountered in current proinflammatory RCD-mediated immunotherapy. In this review, the recent design strategies of PS probes are detailly summarized and their potential advantages for tumor-specific proinflammatory RCD induction are discussed. Moreover, the representative examples in cancer immunotherapy are highlighted and future perspectives in this emerging field are proposed.
Assuntos
Ferroptose , Morte Celular Regulada , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Imunoterapia , Morte CelularRESUMO
Bacterial meningitis after percutaneous radiofrequency trigeminal ganglion is a rare but severe complication. In this article, we report a case of meningitis due to Streptococcus parasanguinis and review the related literature. A 62-year-old male patient with uremia and severe trigeminal neuralgia presented to another hospital and was offered to undergo radiofrequency treatment for a trigeminal ganglion lesion (2022.08.05). The next day (2022.08.06), he presented with a headache and right shoulder and back pain. The pain continued to worsen, so he came to our hospital (The First Affiliated Hospital of Wannan Medical College) and received a diagnosis of bacterial meningitis, which was confirmed by a lumbar puncture. The patient was treated with appropriate antibiotics, and subsequently recovered before being discharged. Although this complication is relatively rare, its progression is rapid. Meningitis must be suspected when a patient presents with headache, fever, and other symptoms associated with meningitis within days after undergoing radiofrequency treatment for a trigeminal ganglion lesion, especially if the patient has an underlying disease that causes a decline in immunity. We discuss this case in terms of clinical presentation, time of onset, treatment, prognosis, past history, and sex. Although early detection of this complication is beneficial, it is better to effectively prevent its occurrence.
Assuntos
Meningites Bacterianas , Neuralgia do Trigêmeo , Masculino , Humanos , Pessoa de Meia-Idade , Neuralgia do Trigêmeo/terapia , Neuralgia do Trigêmeo/complicações , Gânglio Trigeminal , Streptococcus , Meningites Bacterianas/terapia , Meningites Bacterianas/etiologiaRESUMO
Rapid and accurate intraoperative pathological diagnosis (IOPD) is essential for intraoperative decision-making to improve patients' outcomes and avoid reoperations. In this study, using a NAD(P)H-activated fluorescent probe, a multifunctional fluorescent indicator has been developed to selectively identify tumor cells from normal tissue and to achieve cancer grading identification. This rapid response probe, CyQ-1, features unprecedented sensitivity and rapid response toward NADH at low nanomolar levels under physiological conditions. Moreover, this indicator allows both colorimetric and fluorescent NADH detection in HeLa, A549, MDA-MB-231, 4T1, MCF-7, HePG2, HUVEC, and HL-7702 cells. Expanding the use of this indicator to advanced tissue models, its ability to visualize NADH in 120 paraffin-embedded colorectal sections and 20 cases of intraoperative frozen sections of lung cancer was further verified. CyQ-1-based cancer grading identification shows an overall 92.5 and 100% agreement with the "gold standard test" of histologic grading toward paraffin and frozen sections, respectively. The sensitivity and specificity for discriminating poorly, moderately, and well-differentiated tumor sections were all above 90%. In a word, the rapid and accurate NADH detection ability for clinical sections makes this proposed indicator a potential candidate for clinical IOPD quantification and tumor differentiation grade recognition.
RESUMO
Gastric cancer (GC) remains one of the prevalent causes of cancer-related deaths globally. Long non-coding RNAs (lncRNAs) have been associated with different cancers. The polarization of macrophages towards the M2 (alternatively activated) phenotype promotes immunologic tolerance and can induce gastric tumorigenesis. Thus far, lncRNAs have been shown to modulate the differentiation of immune cells. Here, we investigated the biological effects of LINC00665 on the progression of GC and explored the mechanisms underlying its ability to mediate the polarization of macrophages towards the M2 phenotype. We report that the levels of LINC00665 were increased in GC tissues. Furthermore, this increase in LINC00665 expression could be associated with decreased overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS). Using cell-based macrophage polarization models, we demonstrated that LINC00665 upregulation in GC cells facilitated the polarization of macrophages towards the M2 but not M1 (classically activated) phenotype. Furthermore, the loss of LINC00665 prevented the M2 polarization of macrophages. Mechanically, we identified that Wnt1 was the downstream target of LINC00665. Additionally, LINC00665 could directly interact with the transcription factor BTB domain and CNC homology 1 (BACH1). The interaction between LINC00665 and BACH1 resulted in the activation and binding of BACH1 to the Wnt1 promoters. Furthermore, BACH1 silencing could inhibit GC progression, which highlighted a crucial role for BACH1 in LINC00665-mediated Wnt1 activation. In addition, genetic Wnt1 overexpression effectively abolished the repression of Wnt signaling after BACH1 depletion and mediated GC development by supporting M2 macrophage polarization. In conclusion, we report that LINC00665 modulates M2 macrophage polarization and suggest that it may facilitate macrophage-dependent GC progression.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , RNA Longo não Codificante , Neoplasias Gástricas , Macrófagos Associados a Tumor , Fatores de Transcrição de Zíper de Leucina Básica/genética , Humanos , Ativação de Macrófagos , RNA Longo não Codificante/genética , Neoplasias Gástricas/metabolismo , Macrófagos Associados a Tumor/citologia , Proteína Wnt1RESUMO
OBJECTIVE: To investigate the optimum ethanol extraction process conditions for the available components in the tea - Catechines (CT) including Epigallo catechin gallate (EGCG) and Caffeine (CF). METHODS: The content of EGCG, CT and CF, extraction rate, DPPH * Free radical scavenging capacity were chosen as the assessment indexes. With the alcohol ratio (A), solid-liquid ratio (B) and reflux time (C) as investigation factors, the optimum ethanol extraction process of the available components from tea was determined by L9 (3(4)) orthogonal experimental design. RESULTS: It would obtain different extraction conditions to analyze the assessment indexes depending on the different extraction purposes. For the purpose of CT, the contents of EGCG and CT, extraction rate and DPPH * Free radical scavenging capacity were chosen as the assessment indexes, the optimum extraction conditions were selected as follows: the ratio of raw material to 75% alcohol was 1: 12, the reflux time was 30 minutes and extraction times were three; For the purpose of CF, the content of CF and extraction rate were chosen as the assessment indexes, the optimum extraction conditions were selected as follows: the ratio of raw material to 60% alcohol was 1: 12, the reflux time was 30 minutes and extraction times were three; For the purpose of integrated extraction, the contents of CT and CF, extraction rate and DPPH * Free radical scavenging capacity were chosen as the assessment indexes, the optimum extraction conditions were selected as follows: the ratio of raw material to 60% alcohol was 1: 8, the reflux time was 30 minutes and extraction times were three. CONCLUSION: The optimum extraction process in order to attain different purposes can give a reference to the research of a new medicine and industry production.
Assuntos
Cafeína/isolamento & purificação , Catequina/isolamento & purificação , Chá/química , Tecnologia Farmacêutica/métodos , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cafeína/análise , Cafeína/farmacologia , Catequina/análise , Catequina/farmacologia , Etanol , Radical Hidroxila/metabolismo , Solventes/química , Temperatura , Fatores de TempoRESUMO
Hemoglobin-functionalized HKUST-1 as an artificial oxygen carrier has been developed. The new oxygen carrier has excellent oxygen loading capacity and good chemical durability. The sustained electrochemical responses toward H2O2 and O2 make this new material an ideal candidate as a promising artificial blood substitute.
Assuntos
Substitutos Sanguíneos/química , Hemoglobinas/química , Estruturas Metalorgânicas/química , Oxigênio/química , Técnicas Eletroquímicas , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismoRESUMO
Macrocyclic peptides are promising scaffolds of bioactive compounds and clinical therapeutics. Herein, we develop a strategy for the macrocyclization of biaryl-bridged peptides through late-stage Pd-catalyzed C(sp2)-H arylation. This method displays broad substrate scope and high efficiency in the synthesis of peptide conjugates with various bioactive molecules. Furthermore, we applied this method to prepare peptide macrocycles with aryl-aryl cross-links. Our results show the effectiveness of backbone amide groups as directing groups in Pd-catalyzed C-H functionalization of peptides.
RESUMO
Bioactive peptides are emerging as promising candidates of clinic therapeutics. Here, we report a method for late-stage functionalization of sulfonamide-containing peptides through Pd-catalyzed C(sp3)-H arylation. In this protocol, the backbones of N-sulfonated peptides act as directing groups, which allows site-specific arylation of benzylsulfonamide moiety. This chemistry exhibits broad substrate scope and can be utilized to synthesize peptide-peptide and peptide-amino acid conjugates. Our results highlight the potency of the backbone of peptidomimetics in promoting Pd-catalyzed functionalization.
Assuntos
Paládio/química , Peptídeos/química , Sulfonamidas/química , Aminoácidos/química , CatáliseRESUMO
Quantitative real-time PCR (qPCR) is commonly used for deciphering gene functions. For effective qPCR analyses, suitable reference genes are needed for normalization. The objective of this study is to identify the appropriate reference gene(s) for qPCR analyses of the leaves and roots of ramie (Boehmeria nivea L.), an important natural fiber crop. To accomplish this goal, we investigated the expression patterns of eight common plant qPCR reference genes in ramie leaves and roots under five abiotic stresses, five hormonal treatments, and one biotic stress. The relative expression stabilities of the eight genes were evaluated using four common but different approaches: geNorm, NormFinder, BestKeeper, and RefFinder. Across the 11 tested conditions, ACT1 was the most stably expressed among the eight genes while GAPDH displayed the biggest variation. Overall, while variations in the suggested reference genes were found for different tissue x treatment combinations, our analyses revealed that together, genes ACT1, CYP2, and UBQ can provide robust references for gene expression studies of ramie leaves under most conditions, while genes EF-1α, TUB, and ACT1 can be used for similar studies of ramie roots. Our results should help future functional studies of the genes in ramie genome across tissues and environmental conditions.
Assuntos
Boehmeria/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Perfilação da Expressão Gênica , Padrões de Referência , Estresse FisiológicoRESUMO
Peptides and peptidomimetics are emerging as an important class of clinic therapeutics. Here we report a peptide-guided method for the functionalization and macrocyclization of bioactive peptidosulfonamides by Pd(II)-catalyzed late-stage C-H activation. In this protocol, peptides act as internal directing groups and enable site-selective olefination of benzylsulfonamides and cyclization of benzosulfonamides to yield benzosultam-peptidomimetics. Our results provide an unusual example of benzosulfonamide cyclization with olefins through a sequential C-H activation, which involves the generation of a reactive palladium-peptide complex. Furthermore, this protocol allows facile self-guided macrocyclization of sulfonamide-containing peptides by intramolecular olefination with acrylates and unactivated alkenes, affording bioactive peptidosulfonamide macrocycles of various sizes. Together, our results highlight the utility of peptides as internal directing groups in facilitating transition metal-catalyzed functionalization of peptidomimetics.