Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37347126

RESUMO

The isoelectronic molecules UN and UO+ are known to have Ω = 3.5 and Ω = 4.5 ground states, respectively (where Ω is the unsigned projection of the electronic angular momentum along the internuclear axis). A ligand field theory model has been proposed to account for the difference [Matthew and Morse, J. Chem. Phys. 138, 184303 (2013)]. The ground state of UO+ arises from the U3+(5f3(4I4.5))O2- configuration. Owing to the higher nominal charge of the N3- ligand, the U3+ ion in UN is stabilized by promoting one of the 5f electrons to the more polarizable 7s orbital, reducing the repulsive interaction with the ligand and rendering U3+(5f27s(4H3.5))N3- the lowest energy configuration. In the present work, we have advanced the characterization of the UN ground state through studies of two electronic transitions, [18.35]4.5-X(1)3.5 and [18.63]4.5-X(1)3.5, using sub-Doppler laser excitation techniques with fluorescence detection. Spectra were recorded under field-free conditions and in the presence of static electric or magnetic fields. The ground state electric dipole moment [µ = 4.30(2) D] and magnetic ge-factor [2.160(9)] were determined from these data. These values were both consistent with the 5f27s configurational assignment. Dispersed fluorescence measurements were used to determine vibrational constants for the ground and first electronically excited states. Electric dipole moments and magnetic ge-factors are also reported for the higher-energy electronically excited states.


Assuntos
Urânio , Ligantes , Teoria Quântica , Análise Espectral , Nações Unidas
2.
J Chem Phys ; 139(16): 166101, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24182088

RESUMO

The photodissociation dynamics of carbon dioxide cation, CO2(+), mediated by its different Ã(2)Πu,1/2(υ1,υ2,0) vibronic states has been investigated by means of time-sliced velocity map imaging. Through analysis of the recorded translational energy release spectra of photofragment CO(+), we found that the photodissociation of CO2(+) exhibits drastic change in a rather narrow energy region. A conformational barrier in the CO2(+)(Ã(2)A1) state is suggested to be ∼5600 cm(-1) relative to the CO2(+)(Ã(2)Πu,1/2(0,0,0)) state, in reasonable agreement with previous prediction.

3.
RSC Adv ; 13(8): 4924-4931, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36762085

RESUMO

In this work, the excited-state dynamics including intramolecular charge transfer (ICT) and the redshift of C540A have been investigated in a series of solvents on the basis of the Kamlet-Taft solvatochromic parameters (π*, α, ß) using femtosecond transient absorption spectra and systematic theoretical calculation. We demonstrate that the redshift of the emission peak has a linear relationship with the α and π* scales and the effect of the π* scale is slightly stronger than that of the α scale. Meanwhile, the ICT rates can be suggested as relevant to not only the α scale but also the π* scale. Additionally, C540A-AN has proved that the excited state molecules have a unique inactivation mechanism because of the dark feature of the S1 (CT) state. The valuable mechanistic information gleaned from the excited-state dynamics by the experimental and theoretical study would facilitate the design of organic materials for prospective applications in photochemistry and photobiology.

4.
RSC Adv ; 13(31): 21746-21753, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37476044

RESUMO

The intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) processes of coumarin 307 (C307) in different solvents were investigated by performing steady-state/time-resolved transient absorption spectroscopic and steady-state photoluminescence spectroscopic characterizations in combination with time-dependent density functional theoretical calculation (TDDFT). The study unveiled the remarkable influence of solvent polarity and the strength of intermolecular hydrogen bonds formed between the solutes and solvents on the relaxation dynamics of the electronic excited state. Significantly, the emergence of the TICT state was observed in polar solvents, specifically dimethylformamide (DMF) and dimethyl sulfoxidemethanol (DMSO), owing to their inherent polarity as well as the enhanced intermolecular hydrogen bonding interactions. Interestingly, even in a weak polar solvent such as methanol (MeOH), the TICT state was also observed due to the intensified hydrogen bonding effects. Conversely, nonpolar solvents, exemplified by 1,4-dioxane (Diox), resulted in the stabilization of the ICT state due to the augmented N-H⋯O hydrogen bonding interactions. The experimental findings were corroborated by the computational calculations, thus ensuring the reliability of the conclusions drawn. Furthermore, schematic diagrams were presented to illustrate the mechanisms underlying the excited-state deactivation. Overall, this investigation contributes valuable mechanistic insights and provides a comprehensive understanding of the photochemical and photophysical properties exhibited by coumarin dyes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa