Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862499

RESUMO

The differential transformer is an important component in the front-end electronics of high-precision capacitive position sensing circuits, which are widely employed in space inertial sensors and electrostatic accelerometers. The position sensing offset, one of the space inertial sensors' most critical error sources in the performance range, is dominated by the differential transformer asymmetry and requires a high-precision evaluation. This paper proposes a method to assess differential transformers' asymmetry and realize a prototype circuit to test a transformer sample. The results show that the asymmetry measurement precision can achieve 0.6 ppm for the transformer with an asymmetry level of about -278.2 ppm.

2.
Rev Sci Instrum ; 89(11): 114502, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501275

RESUMO

The ultra-sensitive space electrostatic accelerometers have been successfully employed in the Earth's gravity field recovery missions and the space gravitational experiments. Since the accelerometer output in the measurement bandwidth can be influenced by the orbital high-frequency disturbances due to the second-order nonlinearity effects, the relevant quadratic term must be accurately compensated to guarantee the accuracy of the electrostatic accelerometer. In this paper, three sources of the quadratic term are studied and formulated. They are the offset of the test mass in the housing due to the bias of the capacitive position transducer, the asymmetry of the electrode area, and the asymmetry of the actuation electronics. Two feasible compensation methods and an identification means are proposed. Compensation is achieved by adjusting the test mass actual working position or the asymmetry factor of the feedback actuation voltage. Identification is conducted by applying a periodic high frequency signal on the electrodes. Finally, the proposed methods are demonstrated, in view of future space applications, by suspending the accelerometer test mass on a torsion pendulum.

3.
Rev Sci Instrum ; 87(11): 114502, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910446

RESUMO

The high precision space electrostatic accelerometer is an instrument to measure the non-gravitational forces acting on a spacecraft. It is one of the key payloads for satellite gravity measurements and space fundamental physics experiments. The measurement error of the accelerometer directly affects the precision of gravity field recovery for the earth. This paper analyzes the sources of the bias according to the operating principle and structural constitution of the space electrostatic accelerometer. Models of bias due to the asymmetry of the displacement sensing system, including the mechanical sensor head and the capacitance sensing circuit, and the asymmetry of the feedback control actuator circuit are described separately. According to the two models, a method of bias self-calibration by using only the accelerometer data is proposed, based on the feedback voltage data of the accelerometer before and after modulating the DC biasing voltage (Vb) applied on its test mass. Two types of accelerometer biases are evaluated separately using in-orbit measurement data of a space electrostatic accelerometer. Based on the preliminary analysis, the bias of the accelerometer onboard of an experiment satellite is evaluated to be around 10-4 m/s2, about 4 orders of magnitude greater than the noise limit. Finally, considering the two asymmetries, a comprehensive bias model is analyzed. A modified method to directly calibrate the accelerometer comprehensive bias is proposed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa