Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(15): e2200449, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229498

RESUMO

A surface adsorption strategy is developed to enable the engineering of microcomposites featured with ultrahigh loading capacity and precise ratiometric control of co-encapsulated peptides. In this strategy, peptide molecules (insulin, exenatide, and bivalirudin) are formulated into nanoparticles and their surface is decorated with carrier polymers. This polymer layer blocks the phase transfer of peptide nanoparticles from oil to water and, consequently, realizes ultrahigh peptide loading degree (up to 78.9%). After surface decoration, all three nanoparticles are expected to exhibit the properties of adsorbed polymer materials, which enables the co-encapsulation of insulin, exenatide, and bivalirudin with a precise ratiometric control. After solidification of this adsorbed polymer layer, the release of peptides is synchronously prolonged. With the help of encapsulation, insulin achieves 8 days of glycemic control in type 1 diabetic rats with one single injection. The co-delivery of insulin and exenatide (1:1) efficiently controls the glycemic level in type 2 diabetic rats for 8 days. Weekly administration of insulin and exenatide co-encapsulated microcomposite effectively reduces the weight gain and glycosylated hemoglobin level in type 2 diabetic rats. The surface adsorption strategy sets a new paradigm to improve the pharmacokinetic and pharmacological performance of peptides, especially for the combination of peptides.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Adsorção , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida/uso terapêutico , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Peptídeos/farmacologia , Polímeros/química , Ratos
2.
Nano Lett ; 21(22): 9458-9467, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34780176

RESUMO

Engineering a system with a high mass fraction of active ingredients, especially water-soluble proteins, is still an ongoing challenge. In this work, we developed a versatile surface camouflage strategy that can engineer systems with an ultrahigh mass fraction of proteins. By formulating protein molecules into nanoparticles, the demand of molecular modification was transformed into a surface camouflage of protein nanoparticles. Thanks to electrostatic attractions and van der Waals interactions, we camouflaged the surface of protein nanoparticles through the adsorption of carrier materials. The adsorption of carrier materials successfully inhibited the phase transfer of insulin, albumin, ß-lactoglobulin, and ovalbumin nanoparticles. As a result, the obtained microcomposites featured with a record of protein encapsulation efficiencies near 100% and a record of protein mass fraction of 77%. After the encapsulation in microcomposites, the insulin revealed a hypoglycemic effect for at least 14 d with one single injection, while that of insulin solution was only ∼4 h.


Assuntos
Nanopartículas , Adsorção , Insulina , Proteínas
3.
Nanoscale ; 15(10): 5063-5073, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36807439

RESUMO

Accuratly controlling drug release from a smart "self-regulated" drug delivery system is still an ongoing challenge. Herein, we developed a surface decoration strategy to achieve an efficient drug encapsulation with precise ratiometric control. Thanks to the surface decoration with cationic carrier materials by electrostatic attraction, the surface properties of different protein and peptide nanoparticles were uniformed to those adsorbed carrier materials. These carrier materials endowed protein and peptide nanoparticles with good dispersity in the oil phase and significantly inhibited the drug transfer from oil to water. With uniform surface properties, we realized the co-encapsulation of multiple types of proteins and peptides with precise ratiometric control. The encapsulation efficiency was higher than 87.8% for insulin. After solidification, the adsorbed materials on the surface of nanoparticles formed a solid protection layer, which prolonged the mean residence time of insulin from 3.3 ± 0.1 h (for insulin solution) to 47.5 ± 1.3 h. In type 1 diabetes, the spermine-modified acetalated dextran microparticle co-loaded with insulin, glucose oxidase and catalase maintained the blood glucose level within the normal range for 7 days.


Assuntos
Nanopartículas , Proteínas , Liberação Controlada de Fármacos , Peptídeos , Sistemas de Liberação de Medicamentos , Insulina/química , Nanopartículas/química , Portadores de Fármacos/química
4.
Adv Mater ; 35(22): e2211254, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36802103

RESUMO

Microparticles are successfully engineered through controlled interfacial self-assembly of polymers to harmonize ultrahigh drug loading with zero-order release of protein payloads. To address their poor miscibility with carrier materials, protein molecules are transformed into nanoparticles, whose surfaces are covered with polymer molecules. This polymer layer hinders the transfer of cargo nanoparticles from oil to water, achieving superior encapsulation efficiency (up to 99.9%). To control payload release, the polymer density at the oil-water interface is enhanced, forming a compact shell for microparticles. The resultant microparticles can harvest up to 49.9% mass fraction of proteins with zero-order release kinetics in vivo, enabling an efficient glycemic control in type 1 diabetes. Moreover, the precise control of engineering process offered through continuous flow results in high batch-to-batch reproducibility and, ultimately, excellent scale-up feasibility.


Assuntos
Nanopartículas , Polímeros , Reprodutibilidade dos Testes , Água
5.
J Control Release ; 346: 148-157, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429574

RESUMO

Despite the successful treatment of drug intoxications, little information is available to quantitively predict the effect of lipid emulsions on pharmacokinetic features of overdosed drug molecules. We defined two new parameters, drug accommodation capacity and drug capture kinetics, to characterize the drug capture capability of lipid emulsions. By precisely characterizing their drug capture capability, the effect of lipid emulsions on pharmacokinetic features of overdosed drug molecules was quantitively described. This quantitative description enabled an accurate prediction of the reducing extent on the half-life and area under drug concentration-time curve, which was verified by the successful treatment of overdosed propafenone. Moreover, the capture effect prediction using drug capture capability was more accurate than that of directly using logP. Overall, the developed capture capability accurately described the effect of lipid emulsions on drug pharmacokinetic features, which can guide the clinical application of lipid emulsions for the treatment of drug overdose.


Assuntos
Overdose de Drogas , Overdose de Drogas/tratamento farmacológico , Emulsões/uso terapêutico , Meia-Vida , Humanos , Lipídeos/uso terapêutico
6.
Nat Commun ; 13(1): 1262, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273148

RESUMO

Drug delivery systems with high content of drug can minimize excipients administration, reduce side effects, improve therapeutic efficacy and/or promote patient compliance. However, engineering such systems is extremely challenging, as their loading capacity is inherently limited by the compatibility between drug molecules and carrier materials. To mitigate the drug-carrier compatibility limitation towards therapeutics encapsulation, we developed a sequential solidification strategy. In this strategy, the precisely controlled diffusion of solvents from droplets ensures the fast in-droplet precipitation of drug molecules prior to the solidification of polymer materials. After polymer solidification, a mass of drug nanoparticles is embedded in the polymer matrix, forming a nano-in-micro structured microsphere. All the obtained microspheres exhibit long-term storage stability, controlled release of drug molecules, and most importantly, high mass fraction of therapeutics (21.8-63.1 wt%). Benefiting from their high drug loading degree, the nano-in-micro structured acetalated dextran microspheres deliver a high dose of methylprednisolone (400 µg) within the limited administration volume (10 µL) by one single intrathecal injection. The amount of acetalated dextran used was 1/433 of that of low drug-loaded microspheres. Moreover, the controlled release of methylprednisolone from high drug-loaded microspheres contributes to improved therapeutic efficacy and reduced side effects than low drug-loaded microspheres and free drug in spinal cord injury therapy.


Assuntos
Polímeros , Traumatismos da Medula Espinal , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Microesferas , Solventes , Traumatismos da Medula Espinal/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa