Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416128

RESUMO

The functional and structural adaptations in cerebral arteries could be one of the fundamental causes in the occurrence of orthostatic intolerance after space flight. In addition, emerging studies have found that many cardiovascular functions exhibit circadian rhythm. Several lines of evidence suggest that space flight might increase an astronaut's cardiovascular risks by disrupting circadian rhythm. However, it remains unknown whether microgravity disrupts the diurnal variation in vascular contractility and whether microgravity impacts on circadian clock system. Sprague-Dawley rats were subjected to 28-day hindlimb-unweighting to simulate the effects of microgravity on vasculature. Cerebrovascular contractility was estimated by investigating vasoconstrictor responsiveness and myogenic tone. The circadian regulation of CaV1.2 channel was determined by recording whole-cell currents, evaluating protein and mRNA expressions. Then the candidate miRNA in relation with Ca2+ signal was screened. Lastly, the underlying pathway involved in circadian regulation of cerebrovascular contractility was determined. The major findings of this study are: (1) The clock gene BMAL1 could induce the expression of miR-103, and in turn modulate the circadian regulation of CaV1.2 channel in rat cerebral arteries at post-transcriptional level; and (2) simulated microgravity disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility by altering circadian regulation of BMAL1/miR-103/CaV1.2 signal pathway.


Assuntos
Fatores de Transcrição ARNTL/genética , Canais de Cálcio Tipo L/metabolismo , Circulação Cerebrovascular/genética , Ritmo Circadiano , MicroRNAs/genética , Vasoconstrição/genética , Ausência de Peso , Fatores de Transcrição ARNTL/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Masculino , Modelos Biológicos , Ratos , Transdução de Sinais
2.
Can J Physiol Pharmacol ; 96(8): 772-782, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29527943

RESUMO

Recent studies have suggested that microgravity-induced arterial remodelling contributes to post-flight orthostatic intolerance and that multiple mechanisms are involved in arterial remodelling. However, the initial mechanism by which haemodynamic changes induce arterial remodelling is unknown. Focal adhesions (FAs) are dynamic protein complexes that have mechanotransduction properties. This study aimed to investigate the role of FAs in simulated-microgravity-induced basilar and femoral arterial remodelling. A 4-week hindlimb-unweighted (HU) rat model was used to simulate the effects of microgravity, and daily 1-hour intermittent artificial gravity (IAG) was used to prevent arterial remodelling. After 4-week HU, wall thickness, volume of smooth muscle cells (SMCs) and collagen content were increased in basilar artery but decreased in femoral artery (P < 0.05). Additionally, the expression of p-FAK Y397 and p-Src Y418 was increased and reduced in SMCs of basilar and femoral arteries, respectively, by HU (P < 0.05). The number of FAs was increased in basilar artery and reduced in femoral artery by HU (P < 0.05). Furthermore, daily 1-hour IAG prevented HU-induced differential structural adaptations and changes in FAs of basilar and femoral arteries. These results suggest that FAs may act as mechanosensors in arterial remodelling by initiating intracellular signal transduction in response to altered mechanical stress induced by microgravity.


Assuntos
Artéria Basilar/fisiologia , Artéria Femoral/fisiologia , Adesões Focais/metabolismo , Remodelação Vascular , Simulação de Ausência de Peso , Adaptação Fisiológica , Animais , Artérias Cerebrais/fisiologia , Colágeno/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Elevação dos Membros Posteriores , Masculino , Miócitos de Músculo Liso/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Ratos Sprague-Dawley , Quinases da Família src/metabolismo
3.
Cardiovasc Diabetol ; 15: 63, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27067643

RESUMO

BACKGROUND: Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. METHODS: Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 µM berberine could directly inhibit the hyperglycemia-induced CaL currents and suppress the hyperglycemia-induced Ca(2+) releases from RyRs in cerebral VSMCs isolated from normal control rats. CONCLUSIONS: Our study indicated that berberine alleviated the cerebral arterial contractility in the rat model of streptozotocin-induced diabetes via regulating the intracellular Ca(2+) handling of smooth muscle cells.


Assuntos
Berberina/farmacologia , Cálcio/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley
4.
Clin Exp Pharmacol Physiol ; 42(5): 510-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740656

RESUMO

Microgravity-induced vascular remodelling may play an important role in post-spaceflight orthostatic intolerance. In this study, we aimed to investigate the effects of simulated microgravity on monocyte adhesion to aortic endothelium in hindlimb unweighted rats and to elucidate the underlying mechanisms associated with this event. Sprague-Dawley rats were subjected to 4-week hindlimb unweighting to simulate microgravity. The recruitment of monocytes to the abdominal aorta was investigated by en face immunofluorescence staining and monocyte binding assays. The expression of the adhesion molecules E-selectin and vascular cell adhesion molecule-1 as well as the cytokine monocyte chemoattractant protein (MCP)-1 was evaluated by immunohistochemical staining, western blot, and quantitative reverse transcription polymerase chain reaction analyses. Additionally, nuclear factor-κB (NF-κB) activation and the messenger RNA expression levels of E-selectin, vascular cell adhesion molecule-1, and MCP-1 were assessed with the administration of an NF-κB inhibitor, pyrrolidine dithiocarbamate. Results showed that simulated microgravity significantly increased monocyte recruitment to the aortic endothelium, protein expression of E-selectin and MCP-1, and NF-κB activation in the abdominal aorta of rats. Pyrrolidine dithiocarbamate treatment not only significantly inhibited NF-κB activity but also reduced the messenger RNA levels of E-selectin, vascular cell adhesion molecule-1, and MCP-1 as well as monocyte recruitment in the abdominal aorta of hindlimb unweighted rats. These results suggest that simulated microgravity increases monocyte adhesion to rat aortic endothelium via the NF-κB-mediated expression of the adhesion molecule E-selectin and the cytokine MCP-1. Therefore, an NF-κB-mediated inflammatory response may be one of the cellular mechanisms responsible for arterial remodelling during exposure to microgravity.


Assuntos
Aorta Abdominal/citologia , Endotélio Vascular/citologia , Monócitos/citologia , NF-kappa B/metabolismo , Simulação de Ausência de Peso , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quimiocina CCL2/genética , Selectina E/genética , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Monócitos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Pirrolidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Tiocarbamatos/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética
5.
Can J Physiol Pharmacol ; 92(8): 661-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25008451

RESUMO

Post-spaceflight orthostatic intolerance is one of the most important adverse effects after exposure to space microgravity, and there are still no effective countermeasures. It has been considered that arterial remodeling may play an important role in the occurrence of post-spaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. In this study, we investigated whether an inflammatory response exists in the common carotid artery of rats exposed to simulated microgravity. For this, Sprague-Dawley rats were subjected to 4 weeks of hindlimb unweighting to simulate microgravity. The expression levels of the adhesion molecules E-selectin and vascular cell adhesion molecule-1 (VCAM-1), and the cytokine monocyte chemoattractant protein-1 (MCP-1) in the common carotid artery of simulated microgravity rats were evaluated by immunohistochemical staining, quantitative RT-PCR, and Western blot analyses. The recruitment of monocytes in the common carotid artery of rats exposed to simulated microgravity was investigated by en face immunofluorescence staining and monocyte binding assays. Our results provided convincing evidence that there is an inflammatory response in the common carotid artery of rats exposed to simulated microgravity. Our work suggests that the inflammatory response may be a novel cellular mechanism that is responsible for the arterial remodeling that occurs during exposure to microgravity.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Artéria Carótida Primitiva/metabolismo , Elevação dos Membros Posteriores/efeitos adversos , Animais , Peso Corporal , Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/patologia , Artéria Carótida Primitiva/patologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Selectina E/genética , Selectina E/metabolismo , Endotélio Vascular/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Monócitos/metabolismo , Ratos Sprague-Dawley , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Remodelação Vascular
6.
Sheng Li Xue Bao ; 64(2): 107-20, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22513459

RESUMO

The aim of the present study was to evaluate the active and passive mechanical properties and wall collagen and elastin contents of mesenteric small arteries (MSAs) isolated from rats of 28-day simulated microgravity (SUS), countermeasure [S + D: SUS plus 1 h/d -G(x) to simulate intermittent artificial gravity (IAG)] and control (CON) groups. Three mechanical parameters were calculated: the overall stiffness (ß), circumferential stress (σ(θ))-strain (ε(θ)) relationship and pressure-dependent incremental elastic modulus (E(inc,p)). Vessel wall collagen and elastin percentage were quantified by electron microscopy. The results demonstrate that the active mechanical behavior of MSAs differs noticeably among the three groups: the active stress-strain curve of SUS vessels is very close to the passive curve, whereas the active σ(θ)-ε(θ) curves of CON and S + D vessels are shifted leftward and display a parabolic shape, indicating that for MSAs isolated from S + D, but not those from SUS rats, the pressure-induced myogenic constriction can effectively stiffen the vessel wall as the CON vessels. The passive mechanical behavior of MSAs does not show significant differences among the three groups. However, the percentage of collagen is decreased in the wall of SUS and S + D compared with CON vessels in the following order: SUS < S + D < CON. Thus, the relationship between passive mechanical behavior and compositional changes may be complex and yet depends on factors other than the quantity of collagen and elastin. These findings have provided biomechanical data for the understanding of the mechanism of postflight orthostatic intolerance and its gravity-based countermeasure.


Assuntos
Artérias Mesentéricas/fisiologia , Vasoconstrição/fisiologia , Simulação de Ausência de Peso , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Elasticidade , Elevação dos Membros Posteriores/fisiologia , Masculino , Artérias Mesentéricas/ultraestrutura , Músculo Liso Vascular/fisiologia , Músculo Liso Vascular/ultraestrutura , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
7.
Sheng Li Xue Bao ; 64(1): 14-26, 2012 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-22348956

RESUMO

The present study was designed to test the hypothesis that a medium-term simulated microgravity can induce region-specific remodeling in large elastic arteries with their innermost smooth muscle (SM) layers being most profoundly affected. The second purpose was to examine whether these changes can be prevented by a simulated intermittent artificial gravity (IAG). The third purpose was to elucidate whether vascular local renin-angiotensin system (L-RAS) plays an important role in the regional vascular remodeling and its prevention by the gravity-based countermeasure. This study consisted of two interconnected series of in-vivo and ex-vivo experiments. In the in-vivo experiments, the tail-suspended, hindlimb unloaded rat model was used to simulate microgravity-induced cardiovascular deconditioning for 28 days (SUS group); and during the simulation period, another group was subjected to daily 1-hour dorso-ventral (-G(x)) gravitation provided by restoring to normal standing posture (S + D group). The activity of vascular L-RAS was evaluated by examining the gene and protein expression of angiotensinogen (Ao) and angiotensin II receptor type 1 (AT1R) in the arterial wall tissue. The results showed that SUS induced an increase in the media thickness of the common carotid artery due to hypertrophy of the four SM layers and a decrease in the total cross-sectional area of the nine SM layers of the abdominal aorta without significant change in its media thickness. And for both arteries, the most prominent changes were in the innermost SM layers. Immunohistochemistry and in situ hybridization revealed that SUS induced an up- and down-regulation of Ao and AT1R expression in the vessel wall of common carotid artery and abdominal aorta, respectively, which was further confirmed by Western blot analysis and real time PCR analysis. Daily 1-hour restoring to normal standing posture over 28 days fully prevented these remodeling and L-RAS changes in the large elastic arteries that might occur due to SUS alone. In the ex-vivo experiments, to elucidate the important role of transmural pressure in vascular regional remodeling and differential regulation of L-RAS activity, we established an organ culture system in which rat common carotid artery, held at in-vivo length, can be perfused and pressurized at varied flow and pressure for 7 days. In arteries perfused at a flow rate of 7.9 mL/min and pressurized at 150 mmHg, but not at 0 or 80 mmHg, for 3 days led to an augmentation of c-fibronectin (c-FN) expression, which was also more markedly expressed in the innermost SM layers, and an increase in Ang II production detected in the perfusion fluid. However, the enhanced c-FN expression and increased Ang II production that might occur due to a sustained high perfusion pressure alone were fully prevented by daily restoration to 0 or 80 mmHg for a short duration. These findings from in-vivo and ex-vivo experiments have provided evidence supporting our hypothesis that redistribution of transmural pressures might be the primary factor that initiates region-specific remodeling of arteries during microgravity and the mechanism of IAG is associated with an intermittent restoration of the transmural pressures to their normal distribution. And they also provide support to the hypothesis that L-RAS plays an important role in vascular adaptation to microgravity and its prevention by the IAG countermeasure.


Assuntos
Angiotensinogênio/metabolismo , Aorta Abdominal/patologia , Artéria Carótida Primitiva/patologia , Receptor Tipo 1 de Angiotensina/metabolismo , Simulação de Ausência de Peso , Angiotensinogênio/genética , Animais , Aorta Abdominal/fisiopatologia , Artéria Carótida Primitiva/fisiopatologia , Elevação dos Membros Posteriores , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina/fisiologia
8.
Sheng Li Xue Bao ; 63(1): 81-8, 2011 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-21340439

RESUMO

Some studies suggest that the calcium channels and rennin-angiotensin system (RAS) play pivotal roles in the region-specific vascular adaptation due to simulated weightlessness. This study was designed to clarify if angiotensin II (Ang II) was involved in the adaptational change of the L-type calcium channel (Ca(L)) in the cerebral arterial vascular smooth muscle cells (VSMCs) under simulated weightlessness. Tail suspension (SUS) for 3 d was used to simulate immediate early cardiovascular changes to weightlessness. Then VSMCs in cerebral basilar artery were enzymatically isolated using papain, and Ca(L) current (barium instead of calcium as current carrier) in VSMCs was measured by whole-cell patch-clamp techniques. The results showed that 3-day simulated weightlessness significantly increased current density of Ca(L). However, I-V relationships of normalized peak current densities and steady-state activation curves of Ca(L) were not affected by simulated weightlessness. Although Ang II significantly increased current densities of Ca(L) in both SUS and control rats, the increase of Ca(L) current density in SUS rats was much more than that in control rats. These results suggest that 3-day simulated weightlessness induces the adaptational change of Ca(L) in cerebral VSMCs including increased response to Ang II, indicating that Ang II may play an important role in the adaptational change of cerebral arteries under microgravity.


Assuntos
Angiotensina II/fisiologia , Canais de Cálcio Tipo L/fisiologia , Artérias Cerebrais/citologia , Miócitos de Músculo Liso/metabolismo , Simulação de Ausência de Peso , Adaptação Fisiológica , Animais , Artérias Cerebrais/fisiologia , Elevação dos Membros Posteriores , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
9.
Am J Physiol Cell Physiol ; 298(6): C1489-500, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20457834

RESUMO

Cerebral arterial remodeling is one of the critical factors in the occurrence of postspaceflight orthostatic intolerance. We hypothesize that large-conductance calcium-activated K(+) (BK(Ca)) channels in vascular smooth muscle cells (VSMCs) may play an important role in regulating cerebrovascular adaptation during microgravity exposure. The aim of this work was to investigate whether activation of BK(Ca) channels is involved in regulation of apoptotic remodeling of cerebral arteries in simulated microgravity rats. In animal studies, Sprague-Dawley rats were subjected to 1-wk hindlimb unweighting to simulate microgravity. Alterations of BK(Ca) channels in cerebral VSMCs were investigated by patch clamp and Western blotting; apoptosis was assessed by electron microscopy and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling (TUNEL). To evaluate the correlation of BK(Ca) channel and apoptosis, channel protein and cell nucleus were double-stained. In cell studies, hSloalpha+beta1 channel was coexpressed into human embryonic kidney 293 (HEK293) cells to observe the effects of BK(Ca) channels on apoptosis. In rats, enhanced activities and expression of BK(Ca) channels were found to be correlated with increased apoptosis in cerebral VSMCs after simulated microgravity. In transfected HEK293 cells, activation of cloned BK(Ca) channel induced apoptosis, whereas inhibition of cloned BK(Ca) channel decreased apoptosis. In conclusion, activation of BK(Ca) channels is associated with increased apoptosis in cerebral VSMCs of simulated microgravity rats.


Assuntos
Apoptose , Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Simulação de Ausência de Peso , Animais , Western Blotting , Linhagem Celular , Artérias Cerebrais/metabolismo , Artérias Cerebrais/patologia , Elevação dos Membros Posteriores , Humanos , Marcação In Situ das Extremidades Cortadas , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Potenciais da Membrana , Microscopia Eletrônica , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Transfecção
10.
Cell Prolif ; 53(3): e12774, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32034930

RESUMO

OBJECTIVES: Postflight orthostatic intolerance has been regarded as a major adverse effect after microgravity exposure, in which cerebrovascular adaptation plays a critical role. Our previous finding suggested that dedifferentiation of vascular smooth muscle cells (VSMCs) might be one of the key contributors to cerebrovascular adaptation under simulated microgravity. This study was aimed to confirm this concept and elucidate the underlying mechanisms. MATERIALS AND METHODS: Sprague Dawley rats were subjected to 28-day hindlimb-unloading to simulate microgravity exposure. VSMC dedifferentiation was evaluated by ultrastructural analysis and contractile/synthetic maker detection. The role of T-type CaV 3.1 channel was revealed by assessing its blocking effects. MiR-137 was identified as the upstream of CaV 3.1 channel by luciferase assay and investigated by gain/loss-of-function approaches. Calcineurin/nuclear factor of activated T lymphocytes (NFAT) pathway, the downstream of CaV 3.1 channel, was investigated by detecting calcineurin activity and NFAT nuclear translocation. RESULTS: Simulated microgravity induced the dedifferentiation and proliferation in rat cerebral VSMCs. T-type CaV 3.1 channel promoted the dedifferentiation and proliferation of VSMC. MiR-137 and calcineurin/NFATc3 pathway were the upstream and downstream signalling of T-type CaV 3.1 channel in modulating the dedifferentiation and proliferation of VSMCs, respectively. CONCLUSIONS: The present work demonstrated that miR-137 and its target T-type CaV 3.1 channel modulate the dedifferentiation and proliferation of rat cerebral VSMCs under simulated microgravity by regulating calcineurin/NFATc3 pathway.


Assuntos
Calcineurina/metabolismo , Canais de Cálcio Tipo T/metabolismo , Artérias Cerebrais/citologia , MicroRNAs/metabolismo , Miócitos de Músculo Liso/citologia , Fatores de Transcrição NFATC/metabolismo , Animais , Encéfalo/irrigação sanguínea , Canais de Cálcio Tipo T/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Artérias Cerebrais/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Simulação de Ausência de Peso
11.
J Appl Physiol (1985) ; 106(1): 251-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18988766

RESUMO

Previous studies have demonstrated activation of the local renin-angiotensin system in hindlimb unweighting (HU) rat vasculature. The present study intended to identify the effects of blockade of angiotensin II (ANG II) type 1 (AT(1)) receptors with losartan on vascular reactivity, nitric oxide synthase (NOS) expression, and superoxide anion (O(2)(*-)) levels in 3-wk HU rat cerebral and carotid arteries. Three weeks later, vasoconstriction, vasodilatation, endothelial NOS (eNOS) and inducible NOS (iNOS) protein, as well as O(2)(*-) levels in rat cerebral and carotid arteries were examined. We found that HU enhanced maximal response to KCl/5-hydroxytryptamine (P < 0.01) in basilar arteries and KCl/phenylephrine (P < 0.05) in common carotid arteries from HU rats. Acetylcholine induced concentration-dependent vasodilatation in all the artery rings, but with significantly smaller amplitude in basilar (P < 0.01) and common carotid (P < 0.05) arteries from HU rats than those from control rats. Chronic treatment with losartan partially restored response to vasoconstrictors and acetylcholine-induced vasodilatation in basilar (P < 0.01) and common carotid (P < 0.05) arteries from losartan-treated HU rats. Furthermore, iNOS content in cerebral arteries and eNOS/iNOS content in carotid arteries were significantly (P < 0.01) increased in HU rats. Meanwhile, HU increased O(2)(*-) levels in all the layers of these arteries. However, losartan restored NOS content and O(2)(*-) levels toward normal. These results suggested that the HU-induced enhancement of vasoconstriction and reduction in endothelium-dependent relaxation involved alterations in O(2)(*-) and NOS content through an ANG II/AT(1) receptor signaling pathway.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Artéria Basilar/efeitos dos fármacos , Artéria Carótida Primitiva/efeitos dos fármacos , Elevação dos Membros Posteriores , Losartan/farmacologia , Óxido Nítrico Sintase/metabolismo , Superóxidos/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Angiotensina II/metabolismo , Animais , Artéria Basilar/metabolismo , Artéria Carótida Primitiva/metabolismo , Relação Dose-Resposta a Droga , Masculino , Modelos Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Simulação de Ausência de Peso
12.
Sheng Li Xue Bao ; 61(1): 27-34, 2009 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-19224051

RESUMO

The aim of the present study was to investigate the effect of a short-term (3-day) simulated microgravity with and without daily dorsoventral gravitation (-G(x)) for 1 h on myogenic tone and vasoconstrictor responsiveness of the middle cerebral artery and mesenteric third-order small artery in rats. The tail-suspension (SUS) model was used to simulate cardiovascular deconditioning due to microgravity. Daily restoring to normal standing (STD) posture for 1 h was adopted to provide -G(x) as the countermeasure. Segments of middle cerebral artery and mesenteric third-order small artery were isolated and cannulated. Vascular diameters in response to increased intraluminal pressure (from 20 mmHg to 120 mmHg, by 20 mmHg steps) of isolated arteries under no-flow conditions were recorded by a Pressure Myograph System in both physiologic salt solution (PSS) (active diameter, Da) and calcium-free PSS (passive diameter, Dp). The myogenic tone was calculated by (Dp-Da)/Dpx100%. Vasoconstrictor responsiveness of the isolated middle cerebral artery to serotonin and that of small mesenteric artery to phenylephrine were assessed in the PSS under an intraluminal pressure of 40 mmHg. The results showed that SUS induced an enhancement of the myogenic tone and vasoconstrictor responsiveness in the isolated middle cerebral artery but a depression of those in the small mesenteric artery. Daily STD for 1 h prevented the depression of myogenic tone and vasoconstrictor responsiveness in the small mesenteric artery, but did not prevent the functional enhancement in the middle cerebral artery. These data suggest that a short-term simulated microgravity may result in different alterations in the function of the cerebral artery and the resistance vessel in the hind-body. Moreover, only the decrease of function in these resistance vessels, not in the cerebral arteries, can be prevented by such a countermeasure of daily STD for 1 h.


Assuntos
Artérias Cerebrais/patologia , Artérias Mesentéricas/patologia , Simulação de Ausência de Peso , Animais , Elevação dos Membros Posteriores , Pressão , Ratos , Serotonina/farmacologia , Resistência Vascular , Vasoconstrição
13.
Sheng Li Xue Bao ; 61(4): 386-94, 2009 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-19701592

RESUMO

The aim of the present study was to further elucidate the mechanisms of vascular adaptation to microgravity and its gravity-based countermeasure by a biomechanical approach. Active (the dissected vessel segment was superfused with PPS) and passive (while it was superfused with Ca(2+)-free PPS) biomechanical properties of mesenteric third-order small arteries and middle cerebral arteries isolated from 3-day simulated microgravity (SUS), countermeasure (STD, daily 1 h of -G(x) gravitation), and control (CON) groups of rats were studied. The following mechanical parameters were calculated: the overall stiffness parameter of passive vessels (beta), circumferential stress (sigma(theta))-strain (epsilon(theta)) relationship, and pressure-dependent incremental elastic modulus (E(inc,p)) of both active and passive vessels, and vascular smooth muscle (VSM) activity-dependent incremental modulus (E(inc,a)). Results from the analysis of active biomechanical properties revealed the contribution of vascular smooth muscle (VSM) tone during the early adaptation to microgravity: (1) For mesenteric small arteries, active circumferential sigma(theta) -epsilon(theta) curve of SUS group was comparable with that of the passive vessels, indicating that the function of VSM to restore the normal stress distribution is compromised; however, this mal-adaptation was fully prevented by the countermeasure of daily 1 h of -G(x) gravitation; (2) For the middle cerebral arteries, active circumferential sigma(theta) -epsilon(theta) relation of SUS group was shifted to the left side of the passive curve and epsilon(theta) was kept at a nearly constant level with the corresponding sigma(theta) being at its normal range; furthermore, the enhanced myogenic tone responsiveness was not prevented by daily short-duration -G(x). Analysis of the passive biomechanical properties has suggested remodeling changes in matrix components of different types of vessels, which might be significant if the exposure duration was further prolonged. In brief, studies of vascular biomechanics are of particular importance in elucidating the mechanisms underlying vascular adaptation to microgravity and its gravity-based countermeasure.


Assuntos
Artérias Mesentéricas/fisiologia , Artéria Cerebral Média/fisiologia , Simulação de Ausência de Peso , Animais , Fenômenos Biomecânicos , Músculo Liso Vascular/fisiologia , Pressão , Ratos
14.
BMC Pharmacol Toxicol ; 18(1): 30, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28441970

RESUMO

BACKGROUND: Vascular disease is a common and often severe complication in diabetes mellitus. Hyperglycemia and hypertension are considered to be two of the leading risk factors for vascular complications in diabetic patients. However, few pharmacologic agents could provide a combinational therapy for controlling hyperglycemia and blood pressure in diabetic patients at the same time. Salidroside (SAL) is the major active ingredient derived from Rhodiola. Recently, it has been reported that SAL have an obvious hypoglycemic effect in diabetes and show a beneficial activity in diabetic vascular dysfunction. However, it remains unknown whether or not SAL treatment could directly reduce blood pressure in diabetes. Furthermore, it is not clear what is the molecular mechanism underlying the vascular protection of SAL treatment in diabetes. METHODS: Male diabetic Goto-Kakizaki (GK) and non-diabetic control Wistar-Kyoto (WKY) rats were administrated with different dosages of SAL (50, 100 and 200 mg/kg/day) for 4 weeks. Contractile responsiveness of cerebral artery to KCl or 5-HT was investigated by Pressure Myograph System. The activity of CaL channel was investigated by recording whole-cell currents, assessing the expressions of CaL channel α1C-subunit and its downstream kinase, MLCK, at protein or mRNA levels. RESULTS: We showed that administration of 100 mg/kg/day SAL for 4 weeks not only lowered blood glucose, but also reduced blood pressure and alleviated cerebrovascular contractile activity in diabetic GK rats, which suggested that SAL treatment may provide a combinational therapy for lowering blood glucose and reducing blood pressure in diabetes at the same time. Furthermore, SAL treatment markedly inhibited the function and expression of CaL channel in cerebral VSMCs isolated from diabetic GK rats or when exposed to hyperglycemia condition, which may be the underlying mechanism responsible for the vascular protection of SAL in diabetes. CONCLUSIONS: The present study provided evidences that SAL contributes to reducing blood pressure and alleviating cerebrovascular contractile activity in diabetic GK rats by inhibition of CaL channel in smooth muscle cells, which may provide a novel approach to treat vascular complications in diabetic patients.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Artérias Cerebrais/efeitos dos fármacos , Cardiomiopatias Diabéticas/tratamento farmacológico , Glucosídeos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Músculo Liso Vascular/efeitos dos fármacos , Fenóis/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Canais de Cálcio Tipo L/genética , Células Cultivadas , Diabetes Mellitus Experimental , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , RNA Mensageiro/metabolismo , Ratos Endogâmicos WKY , Vasodilatação/efeitos dos fármacos
15.
J Mol Endocrinol ; 59(3): 191-204, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28515053

RESUMO

Hyperglycemia and hypertension are considered to be the two leading risk factors for vascular disease in diabetic patients. However, few pharmacologic agents could provide a combinational therapy for controlling hyperglycemia and hypertension at the same time in diabetes. The objectives of this study are to investigate whether berberine treatment could directly reduce blood pressure and identify the molecular mechanism underlying the vascular protection of berberine in diabetic rats. Berberine was intragastrically administered with different dosages of 50, 100 and 200 mg/kg/day to diabetic rats for 8 weeks since the injection of streptozotocin. The endothelium-dependent/-independent relaxation in middle cerebral arteries was investigated. The activity of large-conductance Ca2+-activated K+ channel (BKCa) was investigated by recording whole-cell currents, analyzing single-channel activities and assessing the expressions of α- and ß1-subunit at protein or mRNA levels. Results of the study suggest that chronic administration of 100 mg/kg/day berberine not only lowered blood glucose but also reduced blood pressure and improved vasodilation in diabetic rats. Furthermore, berberine markedly increased the function and expression of BKCa ß1-subunit in cerebral vascular smooth muscle cells (VSMCs) isolated from diabetic rats or when exposed to hyperglycemia condition. The present study provided initial evidences that berberine reduced blood pressure and improved vasodilation in diabetic rats by activation of BKCa channel in VSMCs, which suggested that berberine might provide a combinational therapy for controlling hyperglycemia and blood pressure in diabetes. Furthermore, our work indicated that activation of BKCa channel might be the underlying mechanism responsible for the vascular protection of berberine in diabetes.


Assuntos
Berberina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Berberina/administração & dosagem , Pressão Sanguínea/genética , Diabetes Mellitus Experimental , Relação Dose-Resposta a Droga , Expressão Gênica , Hiperglicemia/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Fatores de Tempo , Vasodilatação/genética
16.
J Physiol Biochem ; 71(2): 205-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25761652

RESUMO

Previous studies have demonstrated inconsistent roles of Rho kinase (ROCK) in the decreased vasoconstriction of rat hindquarter vessels induced by hindlimb unweighting (HU). The present study was designed to determine the unclear role of ROCK in the mediation of HU-induced decreased femoral arterial vasoconstriction. 28-day HU rat was adopted as the animal model. With or without Y-27632, a ROCK inhibitor, isometric force of femoral artery was measured. The expression of ROCK and its effects on downstream targets were also examined. Results showed that (1) HU caused a significant decrease of the phenylephrine (PE)-evoked and potassium chloride (KCl)-evoked femoral arterial vasoconstriction (P < 0.05), confirming the functional findings by previous studies. (2) Inhibition of ROCK with Y-27632 produced an equal reduction of the vasoconstriction in CON and HU. (3) HU significantly decreased ROCK II expression and the effects of ROCK on myosin light-chain phosphatase (MLCP) and MLC (P < 0.05), but increased p65 nuclear translocation (P < 0.05) and inducible nitric oxide synthase (iNOS) expression (P < 0.05). (4) HU significantly (P < 0.05) increased NO production in femoral arteries, with Y-27632 significantly (P < 0.01) amplifying this effect. These findings have revealed that 28-day HU reduced the expression and effects of ROCK on downstream targets both directly (MLCP and MLC) and possibly indirectly (NF-κB/iNOS/NO pathway) related to vasoconstriction in femoral arteries.


Assuntos
Artéria Femoral/fisiologia , Elevação dos Membros Posteriores , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Artéria Femoral/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos , Simulação de Ausência de Peso , Quinases Associadas a rho/antagonistas & inibidores
17.
PLoS One ; 9(5): e97737, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24840155

RESUMO

BACKGROUND: To elucidate further from the biomechanical aspect whether microgravity-induced cerebral vascular mal-adaptation might be a contributing factor to postflight orthostatic intolerance and the underlying mechanism accounting for the potential effectiveness of intermittent artificial gravity (IAG) in preventing this adverse effect. METHODOLOGY/PRINCIPAL FINDINGS: Middle cerebral arteries (MCAs) were isolated from 28-day SUS (tail-suspended, head-down tilt rats to simulate microgravity effect), S+D (SUS plus 1-h/d -Gx gravitation by normal standing to simulate IAG), and CON (control) rats. Vascular myogenic reactivity and circumferential stress-strain and axial force-pressure relationships and overall stiffness were examined using pressure arteriography and calculated. Acellular matrix components were quantified by electron microscopy. The results demonstrate that myogenic reactivity is susceptible to previous pressure-induced, serial constrictions. During the first-run of pressure increments, active MCAs from SUS rats can strongly stiffen their wall and maintain the vessels at very low strains, which can be prevented by the simulated IAG countermeasure. The strains are 0.03 and 0.14 respectively for SUS and S+D, while circumferential stress being kept at 0.5 (106 dyn/cm2). During the second-run pressure steps, both the myogenic reactivity and active stiffness of the three groups declined. The distensibility of passive MCAs from S+D is significantly higher than CON and SUS, which may help to attenuate the vasodilatation impairment at low levels of pressure. Collagen and elastin percentages were increased and decreased, respectively, in MCAs from SUS and S+D as compared with CON; however, elastin was higher in S+D than SUS rats. CONCLUSIONS: Susceptibility to previous myogenic constrictions seems to be a self-limiting protective mechanism in cerebral small resistance arteries to prevent undue cerebral vasoconstriction during orthostasis at 1-G environment. Alleviating of active stiffening and increasing of distensibility of cerebral resistance arteries may underlie the countermeasure effectiveness of IAG.


Assuntos
Artéria Cerebral Média/anatomia & histologia , Artéria Cerebral Média/fisiologia , Simulação de Ausência de Peso/métodos , Angiografia , Animais , Fenômenos Biomecânicos , Microscopia Eletrônica , Pressão , Ratos
18.
J Physiol Biochem ; 68(1): 99-105, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22015782

RESUMO

Recent studies suggested that reactive oxygen species derived from nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase is of functional importance in modulating vascular tone, and we have previously detected excessive superoxide production in tail-suspended hindlimb unweighting (HU) rat cerebral and carotid arteries. HU rat was a widely used model to simulate physiological effects on the vasculature. The present study tended to investigate whether NAD(P)H oxidase inhibition with apocynin influences vasoconstriction, endothelium-dependent relaxation, and nitrite/nitrate (NOx) content in HU rat cerebral and carotid arteries. Vascular contractile and dilate responses were assessed in a myograph organ bath. NOx content in cerebral and carotid arteries was measured. We found enhanced maximal contractile response and impaired endothelium-dependent relaxation in HU rat basilar (P < 0.01) and common carotid artery (P < 0.05); however, chronic treatment of apocynin (50 mg/kg/day) partially reversed abnormal vascular response. Furthermore, 21-day HU increased arterial NOx content (P < 0.01) in cerebral and carotid arteries compared with control rats; however, apocynin treatment restored it toward near-normal values. These data demonstrated that NAD(P)H oxidase-derived oxidative stress mediated abnormal vasoreactivity though nitric oxide mechanism in the settings of simulated microgravity.


Assuntos
Acetofenonas/farmacologia , Fármacos Cardiovasculares/farmacologia , Artérias Carótidas/enzimologia , Elevação dos Membros Posteriores , NADPH Oxidases/antagonistas & inibidores , Animais , Artérias Carótidas/efeitos dos fármacos , Córtex Cerebral/irrigação sanguínea , Antagonistas Colinérgicos/farmacologia , Técnicas In Vitro , Masculino , Nitratos/metabolismo , Nitritos/metabolismo , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Vasodilatação/efeitos dos fármacos
19.
PLoS One ; 7(1): e30387, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253932

RESUMO

Lysosomal exocytosis and fusion to cellular membrane is critical in the oxidative stress formation of endothelium under apoptotic stimulus. We investigated the role therein of it in hyperglycaemia-induced endothelial dysfunction. The lysosome-membrane fusion was shown by the expression of lamp1, the lysosomal membrane marker, on cellular membrane and the transportation of lysosomal symbolic enzymes into cultural medium. We also examined the ceramide production, lipid rafts (LRs) clustering, colocalization of gp91(phox), a NADPH oxidase subunit (NOX) to LRs clusters, superoxide (O2·â») formation and nitric oxide (NO) content in human umbilical vein endothelial cells (HUVEC) and the endothelium-dependent NO-mediated vasodilation in isolated rat aorta. As compared to normal glucose (5.6 mmol/l, Ctrl) incubation, high glucose (22 mmol/l, HG) exposure facilitated the lysosome-membrane fusion in HUVEC shown by significantly increased quantity of lamp1 protein on cellular membrane and enhanced activity of lysosomal symbolized enzymes in cultural medium. HG incubation also elicited ceramide generation, LRs clustering and gp91(phox) colocalization to LRs clusters which were proved to mediate the HG induced O2·â» formation and NO depletion in HUVEC. Functionally, the endothelium-dependent NO-mediated vasodilation in aorta was blunted substantially after HG incubation. Moreover, the HG-induced effect including ceramide production, LRs clustering, gp91(phox) colocalization to LRs clusters, O2·â» formation and endothelial dysfunction could be blocked significantly by the inhibition of lysosome-membrane fusion. We propose that hyperglycaemia-induced endothelial impairment is closely related to the lysosome-membrane fusion and the following LRs clustering, LRs-NOX platforms formation and O2·â» production.


Assuntos
Células Endoteliais da Veia Umbilical Humana/patologia , Hiperglicemia/fisiopatologia , Lisossomos/metabolismo , Fusão de Membrana , Superóxidos/metabolismo , Animais , Biomarcadores/metabolismo , Catepsina C/metabolismo , Ceramidas/farmacologia , Meios de Cultura , Endotélio/efeitos dos fármacos , Endotélio/fisiopatologia , Fluorescência , Inativação Gênica/efeitos dos fármacos , Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Técnicas In Vitro , Lisossomos/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/enzimologia , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Ratos , Esfingomielina Fosfodiesterase/genética , Transfecção , Vasodilatação/efeitos dos fármacos , beta-N-Acetil-Hexosaminidases/metabolismo
20.
EXCLI J ; 9: 195-204, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-29255400

RESUMO

Exposure to microgravity leads to orthostatic intolerance in astronauts and differential vascular structural and functional adaptations have been implicated in its occurrence. The present study tended to clarify the characteristics of vascular inflammation and oxidative stress in hindlimb unweighting (HU) rat vasculature. Male Sprague-Dawley rats were randomly divided into control (CON) and hindlimb unweighting (HU) groups. Three weeks later, immunohistochemistry was used to localize the expression of vascular cell adhesion molecule-1 (VCAM-1) and laser scanning confocal microscope were used to detect superoxide production. Immunohistochemical results revealed positive staining of VCAM-1 on endothelial cells in HU rat basilar and carotid arteries compared with CON, but not in abdominal aorta and femoral arteries. Meanwhile, HU increased O2·- levels in all the layers of basilar and carotid arteries from HU rat but not in abdominal aorta and femoral arteries from HU rat. These data suggested that differential expression of VCAM-1 and O2·- production were concomitant with the vascular adaptations to simulated microgravity and whether they participate in vascular structure and function remodeling merits further investigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa