Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
STAR Protoc ; 5(4): 103323, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39302837

RESUMO

Solvent extraction is the most efficient technique for extracting oils of higher quality for prospective industrial and commercial applications. Here, we present a protocol for extracting oil from Ghana shea nuts using this technique. We describe steps for drying and milling kernels; oil extraction, including the kinetic and thermodynamic processes; and filtration. We then detail procedures for solvent recovery and oil storage. This protocol has the potential for use in industrial and commercial settings for oil extraction. For complete details on the use and execution of this protocol, please refer to Alale et al.1.

2.
Heliyon ; 10(12): e32421, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005915

RESUMO

This study underlines all the techniques adopted to extract and define the oil that was extracted from cashew kernels and also to figure out if it fits the bill for applications in industrial operations. Using the solvent extraction method, the oil was obtained at different extraction times and temperatures. At the maximum temperature 333 K, the highest yield of the oil (34.7 %) was obtained at the highest extraction time 130 min adhering to first order kinetics. The mass transfer (km) and the regression coefficient (R2) were 0.0115 and 0.9853 respectively. The activation energy (Ea.), the entropy changes (ΔS), the equilibrium constant (K) and the enthalpy change (ΔH) were 59.958 KJmol-1, 228.4 KJmolK-1, 7.54 and 70.29 KJmol-1 respectively. The activation enthalpy (ΔH*), entropy (ΔS*) and Gibbs free energy (ΔG*) were 57.2880 KJmol-1, -0.1617 KJ (molK)-1 and 114.834 KJ mol-1, respectively, favoring an endothermic, irreversible, and spontaneous extraction. The negative Gibbs free energy range of -2.3342 KJ(molK)-1 to -5.7602 KJ(molK)-1 indicated the feasibility of oil extraction from cashew kernels. Also, some major fatty acids compositions that were identified in the oil after characterization were oleic acid (71 %) and linoleic acid (32 %). The oil's bond and potential functional groups were identified using the Fourier Transform Infrared analysis (FTIR) which indicated the presence of O-H, C-H, C-N, C[bond, double bond]O, C-C and = C-H.

3.
Heliyon ; 10(11): e31171, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868070

RESUMO

Though little research has been done, shea nut oil (Shea Butter), is a promising shea product with great potential for use in industrial shea product manufacture. To assess the oil obtained from the shea nuts for personal, commercial, and industrial use, this study focuses on the extraction process, the optimal solvent for extraction, thermodynamics and kinetic studies, and characterization of the oil. Using different solvents as well as extraction temperatures and times, the oil was extracted using the solvent extraction method. Moreover, models of thermodynamics and kinetics were used in examining the Shea nut oil extraction at different durations and temperatures. At the highest temperature of 333 K (at 130min), the highest oil yields of 70.2 % and 59.9 % for n-hexane and petroleum ether, respectively, were obtained, following first order kinetics. For both petroleum ether and n-hexane, the regression coefficient (R2) was 1. For the extraction with n-hexane and petroleum ether, the mass transfer coefficient (Km), activation energy (Ea), entropy change (ΔS), enthalpy change (ΔH), and Gibb's free energy (ΔG) were, respectively, (0.0098 ± 0.0061 and 0.0123 ± 0.0084) min-1, 74.59 kJ mol-1 and 88.65 kJ mol-1, (-236.15 ± 0.16 and -235.63 ± 0.17) J/mol K, (71.88 ± 0.06 and 85.94 ± 0.06) kJ/mol, and (148.75 ± 1.52 and 162.46 ± 1.52) kJ/mol. These values favor an irreversible, forward, endothermic, and spontaneous process. Gas chromatography analysis was used to identify the principal fatty acids in the oil, which include stearic acid (52 %), oleic acid (30 %), and linoleic acid (3 %), as well as various minor fatty acids. The oil's potential bonds and functional groups were identified using Fourier Transform Infrared analysis, and the physicochemical parameters such as the iodine value, peroxide value, acid and free fatty acid values were found to be within acceptable ranges for use in domestic, commercial, and industrial settings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa