Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2203071119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442132

RESUMO

Remodeling of the uterine vasculature by invasive extravillous trophoblasts (EVTs) is a critical aspect of human placentation. Insufficient EVT invasion can lead to severe obstetrical complications like preeclampsia, intrauterine growth restriction, and preterm birth. Glial cells missing-1 (GCM1) is a transcription factor that is crucial for proper placentation in mice, and is highly expressed in human syncytiotrophoblast (ST) and EVTs. GCM1 is classically considered a master regulator of ST formation, but little is known about its contribution to the development and function of EVTs. Therefore, in this study we test the hypothesis that GCM1 is a critical regulator of both EVT and ST development and function. We show that GCM1 is highly expressed in human trophoblast stem (TS) cells differentiated into either ST or EVTs. Knockdown of GCM1 in TS cells hindered differentiation into both ST and EVT pathways. When placed in ST media, GCM1-knockdown cells formed small, unstable clusters; when placed in EVT media, cells had altered morphology and transcript profiles resembling cells trapped in an intermediate state between CT and EVT, and invasive capacity through matrix was reduced. RNA sequencing analysis of GCM1-deficient TS cells revealed downregulation of EVT-associated genes and enrichment in transcripts related to WNT signaling, which was linked to decreased expression of the EVT master regulator ASCL2 and the WNT antagonist NOTUM. Our findings reveal an essential role of GCM1 during ST and EVT development, and suggest that GCM1 regulates differentiation of human TS cells into EVTs by inducing expression of ASCL2 and NOTUM.


Assuntos
Nascimento Prematuro , Trofoblastos , Recém-Nascido , Feminino , Gravidez , Humanos , Animais , Camundongos , Neuroglia , Diferenciação Celular , Células-Tronco , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
2.
Biol Reprod ; 109(3): 256-270, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37418168

RESUMO

The differences between males and females begin shortly after birth, continue throughout prenatal development, and eventually extend into childhood and adult life. Male embryos and fetuses prioritize proliferation and growth, often at the expense of the fetoplacental energy reserves. This singular focus on growth over adaptability leaves male fetuses and neonates vulnerable to adverse outcomes during pregnancy and birth and can have lasting impacts throughout life. Beyond this prioritization of growth, male placentas and fetuses also respond to infection and inflammation differently than female counterparts. Pregnancies carrying female fetuses have a more regulatory immune response, whereas pregnancies carrying male fetuses have a stronger inflammatory response. These differences can be seen as early as the innate immune response with differences in cytokine and chemokine signaling. The sexual dimorphism in immunity then continues into the adaptive immune response with differences in T-cell biology and antibody production and transfer. As it appears that these sex-specific differences are amplified in pathologic pregnancies, it stands to reason that differences in the placental, fetal, and maternal immune responses in pregnancy contribute to increased male perinatal morbidity and mortality. In this review, we will describe the genetic and hormonal contributions to the sexual dimorphism of fetal and placental immunity. We will also discuss current research efforts to describe the sex-specific differences of the maternal-fetal interface and how it impacts fetal and maternal health.


Assuntos
Placenta , Caracteres Sexuais , Adulto , Recém-Nascido , Gravidez , Feminino , Masculino , Humanos , Criança , Placenta/patologia , Saúde Materna , Feto , Imunidade Inata , Imunidade Adaptativa
3.
J Immunol ; 204(3): 694-706, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882516

RESUMO

Many viruses are detrimental to pregnancy and negatively affect fetal growth and development. What is not well understood is how virus-induced inflammation impacts fetal-placental growth and developmental trajectories, particularly when inflammation occurs in early pregnancy during nascent placental and embryo development. To address this issue, we simulated a systemic virus exposure in early pregnant rats (gestational day 8.5) by administering the viral dsRNA mimic polyinosinic:polycytidylic acid (PolyI:C). Maternal exposure to PolyI:C induced a potent antiviral response and hypoxia in the early pregnant uterus, containing the primordial placenta and embryo. Maternal PolyI:C exposure was associated with decreased expression of the maternally imprinted genes Mest, Sfrp2, and Dlk1, which encode proteins critical for placental growth. Exposure of pregnant dams to PolyI:C during early pregnancy reduced fetal growth trajectories throughout gestation, concomitant with smaller placentas, and altered placental structure at midgestation. No detectable changes in placental hemodynamics were observed, as determined by ultrasound biomicroscopy. An antiviral response was not evident in rat trophoblast stem (TS) cells following exposure to PolyI:C, or to certain PolyI:C-induced cytokines including IL-6. However, TS cells expressed high levels of type I IFNR subunits (Ifnar1 and Ifnar2) and responded to IFN-⍺ by increasing expression of IFN-stimulated genes and decreasing expression of genes associated with the TS stem state, including Mest IFN-⍺ also impaired the differentiation capacity of TS cells. These results suggest that an antiviral inflammatory response in the conceptus during early pregnancy impacts TS cell developmental potential and causes latent placental development and reduced fetal growth.


Assuntos
Inflamação/imunologia , Exposição Materna/efeitos adversos , Placenta/fisiologia , Gravidez/imunologia , Trofoblastos/fisiologia , Viroses/imunologia , Animais , Diferenciação Celular , Feminino , Desenvolvimento Fetal , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interferons/genética , Interferons/metabolismo , Interleucina-6/metabolismo , Proteínas de Membrana/genética , Placentação , Poli I-C/imunologia , Ratos , Ratos Sprague-Dawley
4.
Cell Rep Med ; 5(4): 101487, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38547865

RESUMO

The gut microbiota influences anti-tumor immunity and can induce or inhibit response to immune checkpoint inhibitors (ICIs). Therefore, microbiome features are being studied as predictive/prognostic biomarkers of patient response to ICIs, and microbiome-based interventions are attractive adjuvant treatments in combination with ICIs. Specific gut-resident bacteria can influence the effectiveness of immunotherapy; however, the mechanism of action on how these bacteria affect anti-tumor immunity and response to ICIs is not fully understood. Nevertheless, early bacterial-based therapeutic strategies have demonstrated that targeting the gut microbiome through various methods can enhance the effectiveness of ICIs, resulting in improved clinical responses in patients with a diverse range of cancers. Therefore, understanding the microbiota-driven mechanisms of response to immunotherapy can augment the success of these interventions, particularly in patients with treatment-refractory cancers.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Imunoterapia , Bactérias
5.
Front Cell Dev Biol ; 11: 1079164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152295

RESUMO

Introduction: Uterine Natural Killer (NK) cells are the predominant immune cells within the decidua during early pregnancy. These cells are thought to regulate aspects of decidualization and placental development, but their functions remain poorly characterized, especially in species with deeply invading trophoblasts such as humans and rats. Interleukin-15 (IL-15) is a cytokine required for NK cell development and survival. IL-15 mutant (IL15Δ/Δ) rats lack NK cells and exhibit altered placental development with precocious trophoblast invasion. In this study, we profiled gene expression differences between wild-type and IL15Δ/Δ implantation sites to reveal candidate factors produced by uterine NK cells that may regulate placentation and trophoblast invasion. Methods: Clariom S gene expression profiling was performed using implantation sites collected from pregnant wild-type and IL15Δ/Δ rats on gestational day 9.5. Levels and localization of perforin and osteopontin in implantation sites from wild-type and IL15Δ/Δ rats were further analyzed. The effect of osteopontin on the invasive capacity of rat trophoblasts was evaluated using Matrigel-based Transwell assays. Results: There were 257 genes differentially expressed between wild-type and IL15Δ/Δ implantation sites on gestational day 9.5, including decreased expression of various NK cell markers in IL15Δ/Δ rats, as well as Spp1, which encodes osteopontin. In wild-type rats, osteopontin was present within the decidua basalis and adjacent to the primitive placenta, and osteopontin colocalized with the NK cell marker perforin. Osteopontin was also detectable in uterine glands. Conversely, in IL15Δ/Δ rats, osteopontin and perforin were not readily detectable in the decidua despite robust osteopontin levels in uterine glands. Neutralization of osteopontin in media conditioned by cells isolated from the decidua decreased invasion of rat trophoblasts, suggesting that reduced levels of osteopontin are unlikely to account for the precocious trophoblast invasion in IL15Δ/Δ rats. Conclusion: Osteopontin is expressed by NK cells at the maternal-fetal interface in rats and may contribute to modulation of trophoblast invasion.

6.
Brain Behav Immun Health ; 23: 100473, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35668725

RESUMO

Maternal infections during pregnancy are linked with an increased risk for disorders like Autism Spectrum Disorder and schizophrenia in the offspring. Although precise mechanisms are still unclear, clinical and preclinical evidence suggest a strong role for maternal immune activation (MIA) in the neurodevelopmental disruptions caused by maternal infection. Previously, studies using the Polyinosinic:Polycytidylic (Poly I:C) MIA preclinical model showed that cytokines like Interleukin 6 (Il6) are important mediators of MIA's effects. In this study, we hypothesized that Il15 may similarly act as a mediator of Poly I:C MIA, given its role in the antiviral immune response. To test this hypothesis, we induced Poly I:C MIA at gestational day 9.5 in wildtype (WT) and Il15 -/- rat dams and tested their offspring in adolescence and adulthood. Poly I:C MIA and Il15 knockout produced both independent and synergistic effects on offspring behaviour. Poly I:C MIA decreased startle reactivity in adult WT offspring but resulted in increased adolescent anxiety and decreased adult locomotor activity in Il15 -/- offspring. In addition, Poly I:C MIA led to genotype-independent effects on locomotor activity and prepulse inhibition. Finally, we showed that Il15 -/- offspring exhibit distinct phenotypes that were unrelated to Poly I:C MIA including altered startle reactivity, locomotion and signal transduction in the auditory brainstem. Overall, our findings indicate that the lack of Il15 can leave offspring either more or less susceptible to Poly I:C MIA, depending on the phenotype in question. Future studies should examine the contribution of fetal versus maternal Il15 in MIA to determine the precise developmental mechanisms underlying these changes.

7.
Endocrinology ; 162(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647996

RESUMO

Iron deficiency, which occurs when iron demands chronically exceed intake, is prevalent in pregnant women. Iron deficiency during pregnancy poses major risks for the baby, including fetal growth restriction and long-term health complications. The placenta serves as the interface between a pregnant mother and her baby, and it ensures adequate nutrient provisions for the fetus. Thus, maternal iron deficiency may impact fetal growth and development by altering placental function. We used a rat model of diet-induced iron deficiency to investigate changes in placental growth and development. Pregnant Sprague-Dawley rats were fed either a low-iron or iron-replete diet starting 2 weeks before mating. Compared with controls, both maternal and fetal hemoglobin were reduced in dams fed low-iron diets. Iron deficiency decreased fetal liver and body weight, but not brain, heart, or kidney weight. Placental weight was increased in iron deficiency, due primarily to expansion of the placental junctional zone. The stimulatory effect of iron deficiency on junctional zone development was recapitulated in vitro, as exposure of rat trophoblast stem cells to the iron chelator deferoxamine increased differentiation toward junctional zone trophoblast subtypes. Gene expression analysis revealed 464 transcripts changed at least 1.5-fold (P < 0.05) in placentas from iron-deficient dams, including altered expression of genes associated with oxygen transport and lipoprotein metabolism. Expression of genes associated with iron homeostasis was unchanged despite differences in levels of their encoded proteins. Our findings reveal robust changes in placentation during maternal iron deficiency, which could contribute to the increased risk of fetal distress in these pregnancies.


Assuntos
Deficiências de Ferro/fisiopatologia , Placentação/fisiologia , Complicações na Gravidez/fisiopatologia , Trofoblastos/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Dieta , Suplementos Nutricionais , Feminino , Ferro/farmacologia , Ferro/uso terapêutico , Deficiências de Ferro/complicações , Deficiências de Ferro/dietoterapia , Troca Materno-Fetal/efeitos dos fármacos , Placentação/efeitos dos fármacos , Gravidez , Complicações na Gravidez/dietoterapia , Ratos , Ratos Sprague-Dawley , Trofoblastos/efeitos dos fármacos
8.
Brain Behav Immun Health ; 9: 100156, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34589898

RESUMO

Maternal immune activation (MIA) in response to infection during pregnancy has been linked through various epidemiological and preclinical studies to an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia in exposed offspring. Sensory filtering disruptions occur in both of these disorders and are typically measured using the acoustic startle response in both humans and rodents. Our study focuses on characterizing the baseline reactivity, habituation and prepulse inhibition (PPI) of the acoustic startle response following exposure to MIA. We induced MIA using polyinosinic: polycytidylic acid (poly I:C) at gestational day (GD) 9.5 or 14.5, and we tested sensory filtering phenotypes in adolescent and adult offspring. Our results show that startle reactivity was robustly increased in adult GD9.5 but not GD14.5 poly I:C offspring. In contrast to some previous studies, we found no consistent changes in short-term habituation, long-term habituation or prepulse inhibition of startle. Our study highlights the importance of MIA exposure timing and discusses sensory filtering phenotypes as they relate to ASD, schizophrenia and the poly I:C MIA model. Moreover, we analyze and discuss the potential impact of between- and within-litter variability on behavioural findings in poly I:C studies.

9.
Front Immunol ; 11: 1145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582210

RESUMO

Maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of neurodevelopment is a major risk factor for behavioral deficits and psychiatric illness in offspring. A spectrum of behavioral abnormalities can be recapitulated in rodents by inducing MIA using the viral mimetic, PolyI:C. Many studies have focused on long-term changes in brain structure and behavioral outcomes in offspring following maternal PolyI:C exposure, but acute changes in prenatal development are not well-characterized. Using RNA-Sequencing, we profiled acute transcriptomic changes in rat conceptuses (decidua along with nascent embryo and placenta) after maternal PolyI:C exposure during early gestation, which enabled us to capture gene expression changes provoked by MIA inclusive to the embryonic milieu. We identified a robust increase in expression of genes related to antiviral inflammation following maternal PolyI:C exposure, and a corresponding decrease in transcripts associated with nervous system development. At mid-gestation, regions of the developing cortex were thicker in fetuses prenatally challenged with PolyI:C, with females displaying a thicker ventricular zone and males a thicker cortical mantle. Along these lines, neural precursor cells (NPCs) isolated from fetal brains prenatally challenged with PolyI:C exhibited a higher rate of self-renewal. Expression of Notch1 and the Notch ligand, delta-like ligand 1, which are both highly implicated in maintenance of NPCs and nervous system development, was increased following PolyI:C exposure. These results suggest that MIA elicits rapid gene expression changes within the conceptus, including repression of neurodevelopmental pathways, resulting in profound alterations in fetal brain development.


Assuntos
Encéfalo/embriologia , Desenvolvimento Fetal , Feto/patologia , Inflamação , Células-Tronco Neurais/patologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo/patologia , Proliferação de Células , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Inflamação/induzido quimicamente , Inflamação/imunologia , Poli I-C/toxicidade , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa