Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Res ; 251(Pt 1): 118608, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447604

RESUMO

The purpose of the study was to evaluate the occurrence and distribution of emerging contaminants, poly- and perfluoroalkyl substances (PFAS), in the Polish Oder River, aiming to uncover new insights into their environmental impact. The research aimed to identify potential sources of PFAS, assess water quality levels, and verify compliance with European Union environmental quality standards. The concentrations of 25 PFAS (20 legacy and 5 emerging) in 20 samples from intakes upstream and downstream of urban areas were analyzed using novel, developed in these studies, environmental analytical procedures involving solid phase extraction and liquid chromatography-tandem mass spectrometry. The presence of 14 PFAS was confirmed, and the concentration of Σ14PFAS ranged from 7.6 to 68.0 ng/L. The main components were short-chain analogs. PFBA was the most abundant, accounting for about one-third of all PFAS detected. An exception was observed in the waters of the Gliwice Canal, where ADONA represented half of the detected Σ14PFAS. Alternative PFOS replacements were found in all samples. In 11 of 20 water samples, environmental quality standards for PFOS exceeded the limit of 0.65 ng/L. In 5 of 9 cases, the ability of urban areas to increase PFAS levels in the river was determined. 9.5%-54.4% share of alternative PFAS in relation to the sum of the targeted PFAS showing their increasing use as substitutes for phased-out PFOS. Hierarchical cluster analysis was used to identify potential sources of PFAS. Analysis revealed that PFAS in the Oder River most likely originated from domestic and agricultural wastewater, as well as chemical industry discharges. However, the occurrence of PFAS in the Oder River is low and comparable to other recent European studies. These findings provide valuable insights for environmental management to mitigate the risks associated with PFAS pollution in Polish rivers. Moreover, the developed analytical procedure provides a valuable tool that can be successfully applied by other researchers to monitor PFAS in rivers around the world.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Rios , Poluentes Químicos da Água , Rios/química , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Polônia , Monitoramento Ambiental/métodos
2.
Planta Med ; 89(5): 551-560, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36044910

RESUMO

Acmella oleracea is an ethnobotanically significant plant with a relatiwely high content of spilanthol. Due to its broad spectrum of activity, including anti-inflammatory, antioxidant, analgesic, antifungal, and bacteriostatic properties, it is considered a valuable bioactive natural product. In addition, spilanthol as its main bioactive component inhibits facial muscle contractions, making it an attractive ingredient in anti-wrinkle and anti-aging cosmetics. Due to its muscle paralyzing effects, it is called herbal botox. The commercial interest in spilanthol encourages the development of effective methods of isolating it from plant material. The methodology used in this paper allows for the obtaining of extracts from Acmella oleracea with a relatively high content of spilanthol. An effective method of spilanthol extraction from all aerial parts of Acmella oleracea as well as methods of enriching spilanthol concentration in extracts achieved by removing polar and acidic substances from crude extracts was developed. To quantify the concentration of spilanthol, a simple, fast and economically feasible quantification protocol that uses nuclear magnetic resonance (HNMR) was developed. In addition, it has been proven, that oxidation of spilanthol by air gives (2E,7Z)-6,9-endoperoxy-N-(2-methylpropyl)-2,7-decadienamide. The studies on spilanthol solutions stability were carried out and the conditions for the long-time storage of spilanthol solutions have also been developed. Additionally, for confirmation of obtained results a sensitive (LOQ=1 ng/mL), precise (RSD lower than 7%) and accurate (RE lower than 7.5%), new HPLC-MS/MS method was applied.


Assuntos
Asteraceae , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Alcamidas Poli-Insaturadas , Analgésicos , Asteraceae/química
3.
Int J Phytoremediation ; : 1-11, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069676

RESUMO

Phytoremediation is a low-cost and sustainable green technology that uses plants to remove organic and inorganic pollutants from aquatic environments. The aim of this study was to investigate the phytoextraction, phytoaccumulation, and phytotransformation of three fluoroquinolones (FQs) (ciprofloxacin [CIP], enrofloxacin [ENF], and levofloxacin [LVF]) by Japanese radish (Raphanus sativus var. longipinnatus) and duckweed (Lemma minor). Determination of FQs and identification of their transformation products (TPs) were performed using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Inter-tissue translocation of FQs in Japanese radish tissues depended on their initial concentration in the medium. CIP (IT = 14.4) and ENF (IT = 17.0) accumulated mainly in radish roots, while LVF in leaves (IT = 230.8) at an initial concentration of 10 µg g-1. CIP (2,104 ng g-1) was detected in the highest concentration, followed by ENF (426.3 ng g-1) and LVF (273.3 ng g-1) in the tissues of both plants. FQs' bioaccumulation factors were significantly higher for duckweed (1.490-18.240) than Japanese radish (0.027-0.103). The removal of FQs from water using duckweed was mainly due to their photolysis and hydrolysis than plant sorption. In the screening, analysis detected 29 FQ TPs. The biotransformation pathways of FQs are described in detail, and the factors that influence their formation are indicated.


This study has presented the efficiency of fluoroquinolone (FQ) residues phytoextraction from water by two plant species (water duckweed, Japanese radish). The use of two plant species allowed for a holistic study of the FQ phytoremediation process by determining the efficiency of extraction, tissue distribution, bioaccumulation tendency, and biotransformation. The research gap regarding FQ transformation products in the phytoremediation process and the factors determining their formation has been filled. This study indicated that duckweed can be used with great efficiency to purify water from FQ contamination.

4.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889250

RESUMO

Manure is a major source of soil and plant contamination with veterinary drugs residues. The aim of this study was to evaluate the uptake of 14 veterinary pharmaceuticals by parsley from soil fertilized with manure. Pharmaceutical content was determined in roots and leaves. Liquid chromatography coupled with tandem mass spectrometry was used for targeted analysis. Screening analysis was performed to identify transformation products in the parsley tissues. A solid-liquid extraction procedure was developed combined with solid-phase extraction, providing recoveries of 61.9-97.1% for leaves and 51.7-95.6% for roots. Four analytes were detected in parsley: enrofloxacin, tylosin, sulfamethoxazole, and doxycycline. Enrofloxacin was detected at the highest concentrations (13.4-26.3 ng g-1). Doxycycline accumulated mainly in the roots, tylosin in the leaves, and sulfamethoxazole was found in both tissues. 14 transformation products were identified and their distribution were determined. This study provides important data on the uptake and transformation of pharmaceuticals in plant tissues.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Drogas Veterinárias , Doxiciclina/análise , Enrofloxacina/análise , Poluentes Ambientais/análise , Esterco/análise , Petroselinum , Solo/química , Poluentes do Solo/análise , Extração em Fase Sólida/métodos , Sulfametoxazol , Tilosina , Drogas Veterinárias/análise
5.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946687

RESUMO

Metronidazole (MET) is a commonly detected contaminant in the environment. The compound is classified as poorly biodegradable and highly soluble in water. Heterogeneous photocatalysis is the most promoted water purification method due to the possibility of using sunlight and small amounts of a catalyst needed for the process. The aim of this study was to select conditions for photocatalytic removal of metronidazole from aquatic samples. The effect of catalyst type, mass, and irradiance intensity on the efficiency of metronidazole removal was determined. For this purpose, TiO2, ZnO, ZrO2, WO3, PbS, and their mixtures in a mass ratio of 1:1 were used. In this study, the transformation products formed were identified, and the mineralization degree of compound was determined. The efficiency of metronidazole removal depending on the type of catalyst was in the range of 50-95%. The highest MET conversion (95%) combined with a high degree of mineralization (70.3%) was obtained by using a mixture of 12.5 g TiO2-P25 + PbS (1:1; v/v) and running the process for 60 min at an irradiance of 1000 W m-2. Four MET degradation products were identified by untargeted analysis, formed by the rearrangement of the metronidazole and the C-C bond breaking.


Assuntos
Metronidazol/química , Processos Fotoquímicos , Purificação da Água , Catálise
6.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443322

RESUMO

The main aim of this study was to develop a method for the isolation and determination of polyphenols-in particular, flavonoids present in various morphological parts of plants belonging to the cabbage family (Brassicaceae). Therefore, a procedure consisting of maceration, acid hydrolysis and measurement of the total antioxidant capacity of plant extracts (using DPPH assay) was conducted. Qualitative analysis was performed employing thin-layer chromatography (TLC), which was presented to be a suitable methodology for the separation and determination of chemopreventive phytochemicals from plants belonging to the cabbage family. The study involved the analysis of 25 vegetal samples, including radish, broccoli, Brussels sprouts, kale, canola, kohlrabi, cabbage, Chinese cabbage, red cabbage, pak choi and cauliflower. In addition, selected flavonoids content in free form and bonded to glycosides was determined by using an RP-UHPLC-ESI-MS/MS method.


Assuntos
Brassicaceae/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/isolamento & purificação , Cromatografia em Camada Fina
7.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443622

RESUMO

Orexins are two neuropeptides synthesised mainly in the brain lateral hypothalamic area. The orexinergic system provides arousal-dependent cues for a plethora of brain centres, playing a vital role in feeding behaviour, regulation of the sleep-wake cycle and circadian rhythms. Recently, orexins were found to be produced in the retina of an eye; however, their content in the vitreous body and possible daily pattern of expression have not yet been explored. In this manuscript, we describe the development and validation of a liquid chromatography with tandem mass spectrometry (LC-MS/MS) method designed for quantitative bioanalysis of orexin in the rat vitreous body. Orexin was extracted from vitreous body samples with a water:acetonitrile:formic acid (80:20:0.1; v/v/v) mixture followed by vortexing and centrifuging. Separation was performed on a reverse-phase HPLC column under gradient conditions. Orexin was analysed via multiple-reaction monitoring (MRM) in the positive electrospray mode. The total analysis time for each sample was less than 5.0 min. Once the method was fully optimised, it was then validated, following the 2018 FDA guidance on bioanalytical method validations. The calibration curves for orexin (1-500 ng/mL) were constructed using a linear regression with a 1/x2 weighting. The lower limit of quantitation for orexin was 1.0 pg/mL for the vitreous body. Intra-day and inter-day estimates of accuracy and precision were within 10% of their nominal values, indicating that the method is reliable for quantitation of orexin in the rat vitreous body. From the physiological perspective, our results are the first to show daily rhythm of orexin synthesis by the retina with possible implications on the circadian regulation of vision.


Assuntos
Cromatografia Líquida , Ritmo Circadiano , Orexinas/metabolismo , Retina/metabolismo , Espectrometria de Massas em Tandem , Corpo Vítreo/metabolismo , Animais , Calibragem , Modelos Lineares , Masculino , Ratos
8.
Molecules ; 25(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674477

RESUMO

This work aimed to comprehensively evaluate the potential and effectiveness of deep eutectic solvents (DESs) in the extraction of seven catechins from various tea samples. Different combinations of DES were used, consisting of Girard's reagent T (GrT) in various mixing ratios with organic acids and choline chloride. The yields of the DES extractions were compared with those from ionic liquids and conventional solvent. DES contained malic acid, as the hydrogen bond donors showed a good solubility of catechins with different polarities. In the second part of the study, a solid-phase extraction (SPE) method was applied to the extraction of catechins from tea infusions. The method was applied to the determination of selected catechins in tea leaves and tea infusions. Furthermore, we demonstrated that the proposed procedure works well in the simultaneous monitoring of these polyphenols, which makes it a useful tool in the quality control of tea.


Assuntos
Catequina/química , Catequina/isolamento & purificação , Líquidos Iônicos/química , Solventes/química , Chá/química , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
9.
Molecules ; 25(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076445

RESUMO

A novel, efficient extraction procedure based on natural deep eutectic solvents (NADES) and ionic liquids (ILs) for determination of 20-hydroxyecdysone (20-E) in spinach has been developed. NADES, the first green extraction agent, with different hydrogen bond donors and acceptors are screened in order to determine extraction efficiencies. NADES consisting of lactic acid and levulinic acid at a molar ratio of 1:1 exhibits the highest yields. ILs, the second green extraction agent, with various cations and anions are also investigated, where [TEA] [OAc]·AcOH, χAcOH = 0.75 displays the highest recovery. Moreover, NADES-SLE and IL-SLE (SLE, solid-liquid extraction) parameters are investigated. Using the obtained optimized method, the recoveries of the target compound in spinach are above 93% and 88% for NADES-SLE and IL-SLE procedure, respectively. The methods display good linearity within the range of 0.5-30 µg/g and LODs of 0.17 µg/g. The proposed NADES-SLE-UHPLC-UV and IL-SLE-UHPLC-UV procedures can be applied to the analysis of 20-E in real spinach samples, making it a potentially promising technique for food matrix. The main advantage of this study is the superior efficiency of the new, green extraction solvents, which results in a significant reduction of extraction time and solvents as compared to those in the literature.


Assuntos
Ecdisterona/química , Líquidos Iônicos/química , Extratos Vegetais/química , Spinacia oleracea/química , Produtos Biológicos/química , Ligação de Hidrogênio , Solventes/química , Água/química
10.
Molecules ; 25(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271858

RESUMO

The increase in the production and consumption of pharmaceuticals increases their presence in the global environment, which may result in direct threats to living organisms. For this reason, there is a need for new methods to analyze drugs in environmental samples. Here, a new procedure for separating and determining selected drugs (diclofenac, ibuprofen, and carbamazepine) from bottom sediment and water samples was developed. Drugs were determined by ultra-high performance liquid chromatography coupled with an ultraviolet detector (UHPLC-UV). In this work, a universal and single-step sample treatment, based on supramolecular solvents (SUPRAS), was proposed to isolate selected anticonvulsants and nonsteroidal anti-inflammatory drugs (NSAIDs) from sediment samples. The following parameters were experimentally selected: composition of the supramolecular solvent (composition THF:H2O (v/v), amount of decanoic acid), volume of extractant, sample mass, extraction time, centrifugation time, and centrifugation speed. Finally, the developed procedure was validated. A Speedisk procedure was also developed to extract selected drugs from water samples. The recovery of analytes using the SUPRAS procedure was in the range of 88.8-115%, while the recoveries of the Speedisk solid-phase extraction procedure ranged from 81.0-106%. The effectiveness of the sorption of the tested drugs by sediment was also examined.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Anticonvulsivantes/isolamento & purificação , Microextração em Fase Líquida/métodos , Preparações Farmacêuticas/isolamento & purificação , Solventes/química , Poluentes Químicos da Água/isolamento & purificação , Anti-Inflamatórios não Esteroides/análise , Anticonvulsivantes/análise , Limite de Detecção , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise
11.
Chirality ; 31(2): 138-149, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609133

RESUMO

Plant material is a rich source of valuable compounds such as flavanones. Their different forms influence bioavailability and biological activity, causing problems with the selection of plant material for specific purposes. The purpose of this research was to determine selected flavanone (eriodictyol, naringenin, liquiritigenin, and hesperetin) enantiomer contents in free form and bonded to glycosides by an RP-UHPLC-ESI-MS/MS method. Different parts (stems, leaves, and flowers) of goldenrod (Solidago virgaurea L.), lucerne (Medicago sativa L.), and phacelia (Phacelia tanacetifolia Benth.) were used. The highest content of eriodictyol was found in goldenrod flowers (13.1 µg/g), where it occurred mainly as the (S)-enantiomer, and the greatest proportion of the total amount was bonded to glycosides. The richest source of naringenin was found to be lucerne leaves (4.7 µg/g), where it was mainly bonded to glycosides and with the (S)-enantiomer as the dominant form. Liquiritigenin was determined only in lucerne, where the flowers contained the highest amount (1.2 µg/g), with the (R)-enantiomer as dominant aglycone form and the (S)-enantiomer as the dominant glycosylated form. The highest hesperetin content was determined in phacelia leaves (0.38 µg/g), where it was present in the form of a glycoside and only as the (S)-enantiomer. A comparison of the different analyte forms occurring in different plant parts was performed for the first time.


Assuntos
Boraginaceae/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Medicago sativa/metabolismo , Solidago/metabolismo , Glicosídeos/química , Estereoisomerismo
12.
Crit Rev Anal Chem ; : 1-19, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493337

RESUMO

Drug resistance in microorganisms is a serious threat to life and health due to the limited number of antibiotics that show efficacy in treating infections and the difficulty in discovering new compounds with antibacterial activity. To address this issue, the World Health Organization created the AWaRe classification, a tool to support global and national antimicrobial stewardship programs. The AWaRe list categorizes antimicrobials into three groups - Access, Watch, and Reserve - according to their intended use. The Reserve group comprises "last resort" medicines used solely for treating infections caused by bacterial strains that are resistant to other treatments. It is therefore necessary to protect them, not only by using them as prudently as possible in humans and animals, but also by monitoring their subsequent fate. Unmetabolized antibiotics enter the environment through hospital and municipal wastewater or from manure, subsequently contaminating bodies of water and soils, thus contributing to the emergence and spread of antibiotic resistance. This article presents a review of determination methods for the Reserve group of antimicrobials in water, wastewater, and manure. Procedures for extracting and determining these substances in environmental samples are described, showing the limited research available, which is typically on a local level.

13.
Sci Total Environ ; 912: 169195, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38081427

RESUMO

Sulfonamides are high-consumption antibiotics that reach the aquatic environment. The threat related to their presence in wastewater and the environment is not only associated with their antibacterial properties, but also with risk of the spread of drug resistance in bacteria. Therefore, the aim of this work was to evaluate the occurrence of eight commonly used sulfonamides, sulfonamide resistance genes (sul1-3) and integrase genes intI1-3 in five full-scale constructed wetlands (CWs) differing in design (including hybrid systems) and in the source of wastewater (agricultural drainage, domestic sewage/surface runoff, and animal runs runoff in a zoo). The CWs were located in low-urbanized areas in Poland and in Czechia. No sulfonamides were detected in the CW treating agricultural tile drainage water. In the other four systems, four sulfonamide compounds were detected. Sulfamethoxazole exhibited the highest concentration in those four CWs and its highest was 12,603.23 ± 1000.66 ng/L in a CW treating a mixture of domestic sewage and surface runoff. Despite the high removal efficiencies of sulfamethoxazole in the tested CWs (86 %-99 %), it was still detected in the treated wastewater. The sul1 genes occurred in all samples of raw and treated wastewater and their abundance did not change significantly after the treatment process and it was, predominantly, at the level 105 gene copies numbers/mL. Noteworthy, sul2 genes were only found in the influents, and sul3 were not detected. The sulfonamides can be removed in CWs, but their elimination is not complete. However, hybrid CWs treating sewage were superior in decreasing the relative abundance of genes and the concentration of SMX. CWs may play a role in the dissemination of sulfonamide resistance genes of the sul1 type and other determinants of drug resistance, such as the intI1 gene, in the environment, however, the magnitude of this phenomenon is a matter of further research.


Assuntos
Esgotos , Águas Residuárias , Animais , Esgotos/microbiologia , Áreas Alagadas , Sulfonamidas , Resistência Microbiana a Medicamentos/genética , Antibacterianos , Sulfanilamida , Sulfametoxazol , Eliminação de Resíduos Líquidos
14.
iScience ; 27(7): 110352, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39055917

RESUMO

The orexinergic system of the lateral hypothalamus plays crucial roles in arousal, feeding behavior, and reward modulation. Most research has focused on adult rodents, overlooking orexins' potential role in the nervous system development. This study, using electrophysiological and molecular tools, highlights importance of orexinergic signaling in the postnatal development of the rodent dorsolateral geniculate nucleus (DLG), a primary visual thalamic center. Orexin activation of DLG thalamocortical neurons occurs in a brief seven-day window around eye-opening, concurrent to transient OX2 receptor expression. Blocking OX2 receptors during this period reduces sensitivity of DLG neurons to green and blue light and lowers spontaneous firing rates in adulthood. This research reveals critical and temporally confined role of orexin signaling in postnatal brain development, emphasizing its contribution to experience-dependent refinement in the DLG and its long-term impact on visual function.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36768038

RESUMO

Antimicrobials and antibiotic resistance genes (ARGs) in substrates processed during anaerobic digestion in agricultural biogas plants (BPs) can reach the digestate (D), which is used as fertilizer. Antimicrobials and ARGs can be transferred to agricultural land, which increases their concentrations in the environment. The concentrations of 13 antibiotics in digestate samples from biogas plants (BPs) were investigated in this study. The abundance of ARGs encoding resistance to beta-lactams, tetracyclines, sulfonamides, fluoroquinolones, macrolide-lincosamide-streptogramin antibiotics, and the integrase genes were determined in the analyzed samples. The presence of cadmium, lead, nickel, chromium, zinc, and mercury was also examined. Antimicrobials were not eliminated during anaerobic digestion. Their concentrations differed in digestates obtained from different substrates and in liquid and solid fractions (ranging from 62.8 ng/g clarithromycin in the solid fraction of sewage sludge digestate to 1555.9 ng/L doxycycline in the liquid fraction of cattle manure digestate). Digestates obtained from plant-based substrates were characterized by high concentrations of ARGs (ranging from 5.73 × 102 copies/gDcfxA to 2.98 × 109 copies/gDsul1). The samples also contained mercury (0.5 mg/kg dry mass (dm)) and zinc (830 mg/kg dm). The results confirmed that digestate is a reservoir of ARGs (5.73 × 102 to 8.89 × 1010 copies/gD) and heavy metals (HMs). In addition, high concentrations of integrase genes (105 to 107 copies/gD) in the samples indicate that mobile genetic elements may be involved in the spread of antibiotic resistance. The study suggested that the risk of soil contamination with antibiotics, HMs, and ARGs is high in farms where digestate is used as fertilizer.


Assuntos
Mercúrio , Metais Pesados , Animais , Bovinos , Antibacterianos/farmacologia , Biocombustíveis , Fertilizantes , Zinco , Esgotos/química , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco
16.
Environ Sci Pollut Res Int ; 30(52): 112922-112942, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843710

RESUMO

Sulfonamides circulating in the environment lead to disturbances in food chains and local ecosystems, but most importantly contribute to development of resistance genes, which generate problems with multidrug-resistant bacterial infections treatment. In urban areas, sources of sulfonamide distribution in soils have received comparatively less attention in contrast to rural regions, where animal-derived manure, used as a natural fertilizer, is considered the main source. The aim of this study was to determine eight sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfapyridine, sulfathiazole, and sulfisoxazole) in environmental soil samples collected from urbanized regions in Silesian Voivodeship with increased animal activity. These soils were grouped according to the organic carbon content. It was necessary to develop versatile and efficient extraction and determination method to analyze selected sulfonamides in various soil types. The developed LC-MS/MS method for sulfonamides analyzing was validated. The obtained recoveries exceeded 45% for soil with medium organic carbon content and 88% for sample with a very low organic carbon content (arenaceous quartz). The obtained results show the high impact of organic matter on analytes adsorption in soil, which influences recovery. All eight sulfa drugs were determined in environmental samples in the concentration range 1.5-10.5 ng g-1. The transformation products of the analytes were also identified, and 29 transformation products were detected in 24 out of 27 extracts from soil samples.


Assuntos
Solo , Sulfonamidas , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polônia , Ecossistema , Sulfanilamida , Carbono , Antibacterianos
17.
Artigo em Inglês | MEDLINE | ID: mdl-36554877

RESUMO

Phytoremediation is an environmentally friendly and economical method for removing organic contaminants from water. The purpose of the present study was to use Limnobium laevigatum for the phytoremediation of water from sulfamethoxazole (SMX) and trimethoprim (TRI) residues. The experiment was conducted for 14 days, in which the loss of the pharmaceuticals in water and their concentration in plant tissues was monitored. Determination of SMX and TRI was conducted using liquid chromatography coupled with tandem mass spectrometry. The results revealed that various factors affected the removal of the contaminants from water, and their bioaccumulation coefficients were obtained. Additionally, the transformation products of SMX and TRI were identified. The observed decrease in SMX and TRI content after 14 days was 96.0% and 75.4% in water, respectively. SMX removal mainly involved photolysis and hydrolysis processes, whereas TRI was mostly absorbed by the plant. Bioaccumulation coefficients of the freeze-dried plant were in the range of 0.043-0.147 for SMX and 2.369-2.588 for TRI. Nine and six transformation products related to SMX and TRI, respectively, were identified in water and plant tissues. The detected transformation products stemmed from metabolic transformations and photolysis of the parent compounds.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Sulfametoxazol/química , Trimetoprima/análise , Hydrocharitaceae/metabolismo , Água/química , Poluentes Químicos da Água/análise
18.
Sci Rep ; 12(1): 17529, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266434

RESUMO

Manure fertilization is the primary source of veterinary antimicrobials in the water-soil system. The research gap is the fate of antimicrobials after their release into the environment. This study aimed to provide a detailed and multi-faceted examination of fertilized cultivated fields using two types of manure (poultry and bovine) enriched with selected antimicrobials. The research focused on assessing the mobility and stability of antimicrobials in the water-soil system. Additionally, transformation products of antimicrobials in the environment were identified. The extraction (solid-phase extraction and/or solid-liquid extraction) and LC-MS/MS analysis procedures were developed to determine 14 antimicrobials in the soil and pore water samples. Ten out of fourteen antimicrobials were detected in manure-amended soil and pore water samples. The highest concentration in the soil was 109.1 ng g-1 (doxycycline), while in pore water, it was 186.6 ng L-1 (ciprofloxacin). Sixteen transformation products of antimicrobials were identified in the soil and soil-related pore water. The same transformation products were detected in both soil and soil pore water extracts, with significantly higher signal intensities observed in soil extracts than in water. Transformation products were formed in oxidation, carbonylation, and ring-opening reactions.


Assuntos
Anti-Infecciosos , Poluentes do Solo , Drogas Veterinárias , Bovinos , Animais , Esterco/análise , Solo , Cromatografia Líquida/métodos , Água/análise , Doxiciclina , Poluentes do Solo/análise , Monitoramento Ambiental , Antibacterianos/análise , Espectrometria de Massas em Tandem/métodos , Anti-Infecciosos/análise , Ciprofloxacina/análise
19.
Sci Total Environ ; 808: 152114, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864028

RESUMO

The aim of the work was to develop a new HPLC-MS/MS method that allows for the simultaneous detection of antimicrobials agents (targeted analysis) and their transformation products (non-targeted analysis), which enabled the elucidation of their transformation pathways in the environment. Targeted analysis was performed for 16 selected antimicrobials agents (AMs) in wastewater collected at different stages of the treatment process and river water from sections before and after wastewater discharge. The samples were collected in the Lyna sewage treatment plant (Olsztyn, Poland) in three measuring periods at different seasons. Analytes were selected from tetracyclines, fluoroquinolones, ß-lactams, macrolides, glycopeptides, lincosamides and synthetic antibiotics. As a part of the targeted analysis, 13 AMs were detected in wastewater samples, and 7 of them in river water samples. However, their presence and concentrations were closely related to the type of the sample and the season in which the sample was taken. The highest concentrations of AMs were detected in samples collected in September (max. 1643.7 ng L-1 TRI), while the lowest AMs concentrations were found in samples collected in June (max. 136.1 ng L-1 CLR). The total content of AMs in untreated wastewater was in the range of 1.42-1644 ng L-1, while in the river water was for upstream 1.22-48.73 ng L-1 and for downstream 2.24-149 ng L-1. In the non-target analysis, 33 degradation products of the selected AMs were identified, and the transformation pathways of their degradation were speculated. In the course of the research, it was found that as a result of the processes taking place in wastewater treatment plant, the parent substances are transformed into a number of stable transformation products. Transformation products resulted from hydroxylation, ring opening, oxidation, methylation or demethylation, carboxylation, or cleavage of the CN bond of the parent AMs.


Assuntos
Anti-Infecciosos , Corrida , Poluentes Químicos da Água , Antibacterianos , Espectrometria de Massas em Tandem , Águas Residuárias , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 836: 155447, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35469868

RESUMO

This study aimed to assess the possibility of using solar light-driven photolysis and TiO2-based photocatalysis to remove (1) antibiotic residues, (2) their transformation products (TPs), (3) antibiotic resistance determinants, and (4) genes identifying the indicator bacteria in a treated wastewater (secondary effluent). 16 antimicrobials belonging to the different classes and 45 their transformation by-products were selected for the study. The most susceptible to photochemical decomposition was tetracycline, which was completely removed in the photocatalysis process and in more than 80% in the solar light-driven photolysis. 83.8% removal (on average) was observed using photolysis and 89.9% using photocatalysis in the case of the tested genes, among which the genes sul1, uidA, and intI1 showed the highest degree of removal by both methods. The study revealed that applied methods promisingly remove the tested antibiotics, their TPs and genes even in such a complex matrix including treated wastewater and photocatalysis process had a higher removal efficiency of antibiotics, TPs and genes tested. Moreover, the high percentage removal of the intI1 gene (>93%) indicates the possibilities of use of the solar light-driven photolysis and TiO2-based photocatalysis in minimizing the antibiotic resistance genes transfer by mobile genetic elements.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Antibacterianos/farmacologia , Catálise , Resistência Microbiana a Medicamentos/genética , Fotólise , Titânio/química , Águas Residuárias/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa