Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38171320

RESUMO

Carbon nanowalls (CNWs) have attracted significant attention for gas sensing applications due to their exceptional material properties such as large specific surface area, electric conductivity, nano- and/or micro-porous structure, and high charge carrier mobility. In this work, CNW films were synthesized and used to fabricate gas sensors for carbon dioxide (CO2) gas sensing. The CNW films were synthesized using an inductively-coupled plasma (ICP) plasma-enhanced chemical vapor deposition (PECVD) method and their structural and morphological properties were characterized using Raman spectroscopy and electron microscopy. The obtained CNW films were used to fabricate gas sensors employing interdigitated gold (Au) microelectrodes. The gas sensors were fabricated using both direct synthesis of CNW films on interdigitated Au microelectrodes on quartz and also transferring presynthesized CNW films onto interdigitated Au microelectrodes on glass. The CO2gas-sensing properties of fabricated devices were investigated for different concentrations of CO2gas and temperature-ranges. The sensitivities of fabricated devices were found to have a linear dependence on the concentration of CO2gas and increase with temperature. It was revealed that devices, in which CNW films have a maze-like structure, perform better compared to the ones that have a petal-like structure. A sensitivity value of 1.18% was obtained at 500 ppm CO2concentration and 100 °C device temperature. The CNW-based gas sensors have the potential for the development of easy-to-manufacture and efficient gas sensors for toxic gas monitoring.

2.
Small ; 19(48): e2304062, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507824

RESUMO

Free-standing tin phosphide/phosphate carbon composite nanofiber mats of unique nanostructure have been successfully synthesized by electrospinning and partially reducing the phosphate-containing precursors. An unusual effect of the Sn:P molar ratio in the precursor solution on the structure and physical-electrochemical properties of the material is observed. Physical characterizations, including X-Ray diffraction (XRD), Raman spectroscopy, X-Ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), confirm the formation of tin phosphide/phosphate nanoparticles of P-rich inner Snx P layer and Sn-rich outer layer uniformly distributed within carbon nanofiber matrix when the Sn:P=1:1. The prepared material is tested as an anode material for lithium-ion batteries and it retains 1141 mAh g-1 charge capacity after 300 cycles at a current density of 250 mA g-1 with almost 100% Coulombic efficiency at room temperature. Furthermore, it demonstrates six times higher capacity (846 mAh g-1 ) at 0 °C compared to a commercial graphite anode and stable cyclability at -20 °C and 50 mA g-1 . Post-mortem ex situ XRD and SEM analyses confirm the structural stability of the designed material and the formation of a uniform stable solid electrolyte interphase layer even after 100 cycles at 50 mA g- 1 .

3.
Small ; 19(44): e2302973, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37377256

RESUMO

Rechargeable zinc aqueous batteries are key alternatives for replacing toxic, flammable, and expensive lithium-ion batteries in grid energy storage systems. However, these systems possess critical weaknesses, including the short electrochemical stability window of water and intrinsic fast zinc dendrite growth. Hydrogel electrolytes provide a possible solution, especially cross-linked zwitterionic polymers that possess strong water retention ability and high ionic conductivity. Herein, an in situ prepared fiberglass-incorporated dual-ion zwitterionic hydrogel electrolyte with an ionic conductivity of 24.32 mS cm-1 , electrochemical stability window up to 2.56 V, and high thermal stability is presented. By incorporating this hydrogel electrolyte of zinc and lithium triflate salts, a zinc//LiMn0.6 Fe0.4 PO4 pouch cell delivers a reversible capacity of 130 mAh g-1 in the range of 1.0-2.2 V at 0.1C, and the test at 2C provides an initial capacity of 82.4 mAh g-1 with 71.8% capacity retention after 1000 cycles with a coulombic efficiency of 97%. Additionally, the pouch cell is fire resistant and remains safe after cutting and piercing.

4.
Nanotechnology ; 32(45)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34320472

RESUMO

Both the sluggish redox kinetics and severe polysulfide shuttling behavior hinders the commercialization of lithium-sulfur (Li-S) battery. To solve these obstacles, we design a cobalt sulfide nanoparticle-embedded flexible carbon nanofiber membrane (denoted as CoS2@NCF) as sulfiphilic functional interlayer materials. The hierarchically porous structure of carbon nanofiber is conducive to immobilizing sulfur species and facilitating lithium-ion penetration. Moreover, electrocatalytic CoS2nanoparticles can significantly enhance the catalytic effect, achieving favorable adsorption-diffusion-conversion interface of polysulfide. Combined with these synergistic features, the assembled Li-S cell with CoS2@NCF interlayer exhibited a great discharge capacity of 950.9 mAh g-1with prolonged cycle lifespan at 1 C (maintained 648.1 mAh g-1over 500 cycles). This multifunctional interlayer material used in this contribution provides an advanced route for developing high-energy-density Li-S battery.

5.
Nanotechnology ; 32(7): 075403, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096535

RESUMO

Advanced design and fabrication of high performance sulfur cathodes with improved conductivity and chemical adsorption towards lithium polysulfides (LiPS) are crucial for further development of Li-S batteries. Hence, we designed a TiO2/Co3O4-CNTs composite derived from Ti-MOF (MIL-125) as the host matrix for sulfur cathode. The polar nature of metal oxides (TiO2, Co3O4) creates the adsorptive sites in the composite and leads to an efficient chemical capture of LiPS. The CNTs ensure the contact between S/Li2S and the host material with high conductivity, enhanced charge transfer and fast electrochemical kinetics. At the same time, the CNTs strengthen the stability of the electrode material. Consequently, the as-prepared TiO2/Co3O4-CNTs composite showed excellent electrochemical performance. The cell with S-TiO2/Co3O4-CNTs delivers an initial specific capacity of 1270 mAh g-1 at 0.2 C and high rate performance with a capacity of 603 mAh g-1 at 3 C.

6.
Nanotechnology ; 31(9): 095405, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31726449

RESUMO

Copper sulfide (CuS) is considered a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and good electrical conductivity. However, the inferior cycle performance and low coulombic efficiency of CuS caused by structure detoriation and degradation and the 'shuttling effect' of polysulfide intermediates are restricting its practical application. In this work, we report a facile method to generate S vacancies (Vs) in CuS nanoflowers by thermal annealing in Ar. The obtained CuS was composited with reduced graphene oxide (rGO) to prepare an anode for LIBs. The existence of vacancy defects in CuS leads to electron delocalization and excitation, which is responsible for the conductivity improvement and fast charge transport kinetics. Meanwhile, the graphene coating layer ensures fast pathways for Li+ ion diffusion and provides strong physical adsorption of the polysulfides. Furthermore, hierarchical CuS spheres composed of ultrathin nanosheets provide large void spaces to accommodate the volume expansion of CuS. The synthesized composite exhibited a high initial discharge capacity of 882 mAh g-1 and demonstrated stable cyclability along with around 99% coulombic efficiency over 100 cycles. The results of this work reveal that Vs-CuS/rGO composites are promising anodes to enhance the performance of next-generation lithium-ion batteries.

7.
Sensors (Basel) ; 20(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932744

RESUMO

With the increase of interest in the application of piezoelectric polyvinylidene fluoride (PVDF) in nanogenerators (NGs), sensors, and microdevices, the most efficient and suitable methods of their synthesis are being pursued. Electrospinning is an effective method to prepare higher content ß-phase PVDF nanofiber films without additional high voltage poling or mechanical stretching, and thus, it is considered an economically viable and relatively simple method. This work discusses the parameters affecting the preparation of the desired phase of the PVDF film with a higher electrical output. The design and selection of optimum preparation conditions such as solution concentration, solvents, the molecular weight of PVDF, and others lead to electrical properties and performance enhancement in the NG, sensor, and other applications. Additionally, the effect of the nanoparticle additives that showed efficient improvements in the PVDF films was discussed as well. For instance, additives of BaTiO3, carbon nanotubes, graphene, nanoclays, and others are summarized to show their contributions to the higher piezo response in the electrospun PVDF. The recently reported applications of electrospun PVDF films are also analyzed in this review paper.

8.
Nanotechnology ; 29(41): 415401, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30036189

RESUMO

A three-dimensionally (3D) ordered macro-/mesoporous TiO2 (3DOM-mTiO2) was synthesized via a simple solvothermal process. 3DOM-mTiO2 was used as a sulfur carrier for cathode materials in a lithium-sulfur (Li-S) battery. The orderly interconnected macro and mesopores structure within the macropore walls yield a large pore volume and high specific surface area in 3DOM-mTiO2, which improved the sulfur loading capacity of the material. The S/TiO2 composite was synthesized as a cathode material for lithium/sulfur battery, which initially produced a high capacity of 1089 mAh g-1 and retained a value of 703 mAh g-1 after 200 cycles. An initial current rate of 0.2 C was used, which was further increased up to 2.5 C when a reversible capacity of 651 mAh g-1 was obtained. The excellent electrochemical performance can be attributed to the 3D ordered macro-/mesoporous structure of TiO2, which physically confines the soluble lithium polysulfides and diminishes the sulfur volume expansion upon cycling. In addition, the strong electrostatic attraction between the Ti-O bond and polysulfide stimulates the performance via stronger adsorption of the electrochemical reaction products.

9.
Inorg Chem ; 56(22): 13815-13821, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29083913

RESUMO

The layered lithium nitridonickelate Li2.0(1)Ni0.67(2)N has been investigated as a negative electrode in the 0.02-1.25 V vs Li+/Li potential window. Its structural and electrochemical properties are reported. Operando XRD experiments upon three successive cycles clearly demonstrate a single-phase behavior in line with the discharge-charge profiles. The reversible breathing of the hexagonal structure, implying a supercell, is fully explained. The Ni2+/Ni+ redox couple is involved, and the electron transfer is combined with the reversible accommodation of Li+ ions in the cationic vacancies. The structural response is fully reversible and minimal, with a maximum volume variation of 2%. As a consequence, a high capacity of 200 mAh g-1 at C/10 is obtained with an excellent capacity retention, close to 100% even after 100 cycles, which makes Li2.0(1)Ni0.67(2)N a promising negative electrode material for Li-ion batteries.

10.
Adv Colloid Interface Sci ; 331: 103249, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032342

RESUMO

Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.

11.
Nanoscale Adv ; 6(2): 578-589, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235078

RESUMO

Lithium-sulfur (Li-S) batteries are attracting tremendous attention owing to their critical advantages, such as high theoretical capacity of sulfur, cost-effectiveness, and environment-friendliness. Nevertheless, the vast commercialisation of Li-S batteries is severely hindered by sharp capacity decay upon operation and shortened cycle life because of the insulating nature of sulfur along with the solubility of intermediate redox products, lithium polysulfides (LiPSs), in electrolytes. This work proposes the use of multifunctional Ni/NiO-embedded carbon nanofibers (Ni/NiO@CNFs) synthesized by an electrospinning technique with the corresponding heat treatment as promising free-standing current collectors to enhance the kinetics of LiPS redox reactions and to provide prolonged cyclability by utilizing more efficient active materials. The electrochemical performance of the Li-S batteries with Ni/NiO@CNFs with ∼2.0 mg cm-2 sulfur loading at 0.5 and 1.0C current densities delivered initial specific capacities of 1335.1 mA h g-1 and 1190.4 mA h g-1, retrieving high-capacity retention of 77% and 70% after 100 and 200 cycles, respectively. The outcomes of this work disclose the beneficial auxiliary effect of metal and metal oxide nanoparticle embedment onto carbon nanofiber mats as being attractively suited up to achieve high-performance Li-S batteries.

12.
ACS Omega ; 8(41): 37899-37907, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867675

RESUMO

With the expanding requirements of recent energy regulations and economic interest in high-performance batteries, the need to improve battery energy density and safety has gained prominence. High-energy-density lithium batteries, employed in next-generation energy storage devices, rely on nickel-rich cathode materials. Since they have extremely high charge/discharge capacity, high operating voltage, prolonged cycle life, and lower cost, nickel-rich cathode materials such as Ni-rich NCM (LiNix > 0.8CoyMnzO2) and Ni-rich NCA (LiNix > 0.8CoyAlzO2) are of particular interest to researchers. Several in situ characterization methodologies are currently used to understand lithium-ion battery electrode response and deterioration better. Nevertheless, in many contexts, these measurement methodologies must be combined with specially designed cells and electrode materials with distinct forms, which is sometimes inconvenient. As an alternative, thermo-voltammetric dynamic characterization may be utilized to describe the thermal internal characteristics of various electrode materials, such as the structural changes and electrode reactions that occur during charging and discharging. In this paper, a nondestructive entropy measurement method demonstrates that phase change occurs for NCM (LiNi0.83Co0.12Mn0.05O2) and NCA (LiNi0.88Co0.09Al0.03O2) at 40-30% of state of charge (SOC) and 90-80% of SOC, respectively. This is confirmed by ex situ X-ray diffraction (XRD) measurements for these highly popular cathodes.

13.
ACS Omega ; 8(8): 8045-8051, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872969

RESUMO

Lithium iron phosphate (LiFePO4, LFP) is one of the most advanced commercial cathode materials for Li-ion batteries and is widely applied as battery cells for electric vehicles. In this work, a thin and uniform LFP cathode film on a conductive carbon-coated aluminum foil was besieged by the electrophoretic deposition (EPD) technique. Along with the LFP deposition conditions, the impact of two types of binders, poly(vinylidene fluoride) (PVdF) and poly(vinylpyrrolidone) (PVP), on the film quality and electrochemical results has been studied. The results revealed that the LFP_PVP composite cathode had a highly stable electrochemical performance compared with the LFP_PVdF counterpart due to the negligible influence of the PVP on the pore volume and size and retaining high surface area of LFP. The LFP_PVP composite cathode film unveiled a high discharge capacity of 145 mAh g-1 at 0.1C and performed over 100 cycles with capacity retention and Coulombic efficiency of 95 and 99%, respectively. The C-rate capability test also revealed a more stable performance of LFP_PVP compared to LFP_PVdF.

14.
RSC Adv ; 13(14): 9428-9440, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968061

RESUMO

Although lithium-sulfur batteries possess the highest theoretical capacity and lowest cost among all known rechargeable batteries, their commercialization is still hampered by the intrinsic disadvantages of low conductivity of sulfur and polysulfide shuttle effect, which is most critical. Considerable research efforts have been dedicated to solving these difficulties for every part of Li-S batteries. Separator modification with metal electrocatalysts is a promising approach to overcome the major part of these disadvantages. This work focuses on the development of Ni nanoparticles encapsulated in a few-layer nitrogen-doped graphene supported by nitrogen-doped graphitic carbon (Ni@NGC) with different metal loadings as separator modifications. The effect of metal loading on the Li-S electrochemical reaction kinetics and performance of Li-S batteries was investigated. Controlling the Ni loading allowed for the modulation of the surface area-to-metal content ratio, which influenced the reaction kinetics and cycling performance of Li-S cells. Among the separators with different Ni loadings, the one with 9 wt% Ni exhibited the most efficient acceleration of the polysulfide redox reaction and minimized the polysulfide shuttling effect. Batteries with this separator retained 77.2% capacity after 200 cycles at 0.5C, with a high sulfur loading of ∼4.0 mg cm-2, while a bare separator showed 51.3% capacity retention after 200 cycles under the same conditions. This work reveals that there is a vast utility space for carbon-encapsulated Ni nanoparticles in electrochemical energy storage devices with optimal selection and rational design.

15.
R Soc Open Sci ; 10(11): 230843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38026010

RESUMO

Chitosan (CS)-based anion exchange membranes (AEMs) have gained significant attention in fuel cell applications owing to their numerous benefits, such as environmental friendliness, flexibility for structural alteration, and improved mechanical, thermal and chemical durability. This study aims to enhance the cell performance of CS-based AEMs by addressing key factors including mechanical stability, ionic conductivity, water absorption and expansion rate. While previous reviews have predominantly focused on CS as a proton-conducting membrane, the present mini-review highlights the advancements of CS-based AEMs. Furthermore, the study investigates the stability of cationic head groups grafted to CS through simulations. Understanding the chemical properties of CS, including the behaviour of grafted head groups, provides valuable insights into the membrane's overall stability and performance. Additionally, the study mentions the potential of modern cellulose membranes for alkaline environments as promising biopolymers. While the primary focus is on CS-based AEMs, the inclusion of cellulose membranes underscores the broader exploration of biopolymer materials for fuel cell applications.

16.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808024

RESUMO

The microbatteries field is an important direction of energy storage systems, requiring the careful miniaturization of existing materials while maintaining their properties. Over recent decades, LiCoO2 has attracted considerable attention as cathode materials for lithium-ion batteries due to its promising electrochemical properties for high-performance batteries. In this work, the thin films of LiCoO2 were obtained by radio-frequency magnetron sputtering of the corresponding target. In order to obtain the desired crystal structure, the parameters such as annealing time, temperature, and heating rate were varied and found to influence the rhombohedral phase formation. The electrochemical performances of the prepared thin films were examined as a function of annealing time, temperature, and heating rate. The LiCoO2 thin film cathode annealed at 550 °C for 1 h 20 min demonstrated the best cycling performance with a discharge specific capacity of around 135 mAh g-1 and volumetric capacity of 50 µAh cm-2µm-1 with a 77% retention at 0.5 C rate.

17.
Sci Rep ; 12(1): 851, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039553

RESUMO

Zinc oxide (ZnO) is one of the most promising metal oxide semiconductor materials, particularly for optical and gas sensing applications. The influence of thickness and solvent on various features of ZnO thin films deposited at ambient temperature and barometric pressure by the sequential ionic layer adsorption and reaction method (SILAR) was carefully studied in this work. Ethanol and distilled water (DW) were alternatively used as a solvent for preparation of ZnO precursor solution. Superficial morphology, crystallite structure, optical and electrical characteristics of the thin films of various thickness are examined applying X-ray diffraction (XRD) system, scanning electron microscopy, the atomic force microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, Hall effect measurement analysis and UV response study. XRD analysis confirmed that thin films fabricated using ethanol or DW precursor solvents are hexagonal wurtzite ZnO with a preferred growth orientation (002). Furthermore, it was found that thin films made using ethanol are as highly crystalline as thin films made using DW. ZnO thin films prepared using aqueous solutions possess high optical band gaps. However, films prepared with ethanol solvent have low resistivity (10-2 Ω cm) and high electron mobility (750 cm2/Vs). The ethanol solvent-based SILAR method opens opportunities to synthase high quality ZnO thin films for various potential applications.

18.
ACS Omega ; 7(49): 45371-45380, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530230

RESUMO

A two-phase anion-exchange membrane was prepared from quaternized chitosan (QCS) integrated with an electrospun polyacrylonitrile (PAN) scaffold by spin coating. To synthesize QCS, glycidyltrimethylammonium chloride in various amounts was introduced into the structure of CS. The characterization of the cast cross-linked QCS (CQCS) membranes by impedance spectroscopy revealed the ionic conductivity (IC) in the range of 2.8 × 10-4 to 8.2 × 10-4 S cm-1 and the degree of quaternization (DQ) of 26.4-51.0%, where the CQCS film with the DQ of 51.0% showed excellent performance. When CQCS was reinforced with a PAN fiber mat, the newly developed composite membrane demonstrated the highest IC of 34 × 10-4 S cm-1 at 80 °C, low swelling, and an almost eightfold increase in tensile strength at a fully hydrated state compared to pristine materials. Moreover, the CQCS/PAN membrane was chemically stable and revealed increasing hydroxide transport during 1 month immersion in alkaline media.

19.
RSC Adv ; 12(43): 27899-27906, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320268

RESUMO

A pure-phase Ni3Sn2 intermetallic alloy encapsulated in a carbon nanofiber matrix (Ni3Sn2@CNF) was successfully prepared by electrospinning and applied as anode for lithium-ion batteries. The physical and electrochemical properties of the Ni3Sn2@CNF were compared to that of pure CNF. The resultant Ni3Sn2@CNF anode produced a high initial discharge capacity of ∼1300 mA h g-1, later stabilizing and retaining ∼350 mA h g-1 (vs. 133 mA h g-1 for CNF) after 100 cycles at 0.1C. Furthermore, even at a high current density of 1C, it delivered a high initial discharge capacity of ∼1000 mA h g-1, retaining ∼313 mA h g-1 (vs. 66 mA h g-1 for CNF) at the 200th cycle. The superior electrochemical properties of the Ni3Sn2@CNF over CNF were attributed to the presence of electrochemically active Sn and decreased charge-transfer resistance with the alloy encapsulation, as confirmed from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results. Finally, post-mortem field-emission scanning electron microscopy (FE-SEM) images proved the preservation of the carbon nanofibers and the alloy after cycling, confirming the successful accommodation of the volume changes during the alloying/dealloying reactions of Sn in the Ni3Sn2@CNF.

20.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630955

RESUMO

Zinc oxide (ZnO) is a well-known semiconductor material due to its excellent electrical, mechanical, and unique optical properties. ZnO nanoparticles are widely used for the industrial-scale manufacture of microelectronic and optoelectronic devices, including metal oxide semiconductor (MOS) gas sensors, light-emitting diodes, transistors, capacitors, and solar cells. This study proposes optimization of synthesis parameters of nanosized ZnO by the electrospinning technique. A Box-Behnken design (BB) has been applied using response surface methodology (RSM) to optimize the selected electrospinning and sintering conditions. The effects of the applied voltage, tip-to-collector distance, and annealing temperature on the size of ZnO particles were successfully investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirm the formation of polyvinylpyrrolidone-zinc acetate (PVP-ZnAc) fibers and nanostructured ZnO after annealing. X-ray diffraction (XRD) patterns indicate a pure phase of the hexagonal structure of ZnO with high crystallinity. Minimal-sized ZnO nanoparticles were synthesized at a constant applied potential of 16 kV, with a distance between collector and nozzle of 12 cm, flow rate of 1 mL/h, and calcination temperature of 600 °C. The results suggest that nanosized ZnO with precise control of size and morphology can be fabricated by varying electrospinning conditions, precursor solution concentration, and sintering temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa