Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13826, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620551

RESUMO

Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational systems biology approaches, to gain a deeper understanding of the molecular interactome involved in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein-Friesian cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits of mastitis. Functional enrichment analysis was conducted to understand the functional behavior of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based modules and constructed an integrated regulatory network based on the modules of interest. To enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, protein-protein interaction (PPI) network construction, screening of hub-hub RNAs, and target prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six modules showed strong associations with clinical characteristics of mastitis. Functional enrichment analysis revealed that the turquoise module was directly related to inflammation persistence and mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for the development of molecular diagnosis and biological therapies for mastitis.


Assuntos
Mastite Bovina , MicroRNAs , RNA Longo não Codificante , Animais , Bovinos , Feminino , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Longo não Codificante/genética , Mastite Bovina/genética , Reprodutibilidade dos Testes , Inflamação
2.
BMC Med Genomics ; 14(1): 20, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461538

RESUMO

BACKGROUND: To make the right treatment decisions about colorectal cancer (CRC) patients reliable predictive and prognostic data are needed. However, in many cases this data is not enough. Some studies suggest that LRIG1 gene (leucine-rich repeats and immunoglobulin-like domains1) has prognostic implications in different kinds of cancers. METHODS: One hundred and two patients with colorectal cancer were retrospectively analyzed for LRIG1 expression at both mRNA and protein levels. SYBR Green Real-Time RT-PCR technique was used for mRNA expression analyses and Glyceraldehyde-3-Phosphate Dehydrogenase gene (GAPDH) was considered as a reference gene for data normalization. LRIG1 protein expression was analyzed using Immunohistochemistry. Additionally, appropriate statistic analyses were used to assess the expression of LRIG1 in test and control groups. The prognostic significance of LRIG1 expression was analyzed using the univariate and multivariate analyses. RESULTS: The data revealed that the expression of LRIG1 in both mRNA and protein levels was down regulated in colorectal tumor tissues (P < 0.01) but is not clinically relevant prognostic indicator in CRC. CONCLUSIONS: Therefore, it is suggested that LRIG1 expression analyses may not be considered as an important issue when making informed and individualized clinical decisions regarding the management of colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Biomarcadores Tumorais/genética , Prognóstico , Estudos Retrospectivos
3.
Front Genet ; 12: 646297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306005

RESUMO

Fatty acid metabolism in poultry has a major impact on production and disease resistance traits. According to the high rate of interactions between lipid metabolism and its regulating properties, a holistic approach is necessary. To study omics multilayers of adipose tissue and identification of genes and miRNAs involved in fat metabolism, storage and endocrine signaling pathways in two groups of broiler chickens with high and low abdominal fat, as well as high-throughput techniques, were used. The gene-miRNA interacting bipartite and metabolic-signaling networks were reconstructed using their interactions. In the analysis of microarray and RNA-Seq data, 1,835 genes were detected by comparing the identified genes with significant expression differences (p.adjust < 0.01, fold change ≥ 2 and ≤ -2). Then, by comparing between different data sets, 34 genes and 19 miRNAs were detected as common and main nodes. A literature mining approach was used, and seven genes were identified and added to the common gene set. Module finding revealed three important and functional modules, which were involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, biosynthesis of unsaturated fatty acids, Alzheimer's disease metabolic pathway, adipocytokine, insulin, PI3K-Akt, mTOR, and AMPK signaling pathway. This approach revealed a new insight to better understand the biological processes associated with adipose tissue.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa