Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 25(3): 1078-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23532069

RESUMO

Operon-like gene clusters are an emerging phenomenon in the field of plant natural products. The genes encoding some of the best-characterized plant secondary metabolite biosynthetic pathways are scattered across plant genomes. However, an increasing number of gene clusters encoding the synthesis of diverse natural products have recently been reported in plant genomes. These clusters have arisen through the neo-functionalization and relocation of existing genes within the genome, and not by horizontal gene transfer from microbes. The reasons for clustering are not yet clear, although this form of gene organization is likely to facilitate co-inheritance and co-regulation. Oats (Avena spp) synthesize antimicrobial triterpenoids (avenacins) that provide protection against disease. The synthesis of these compounds is encoded by a gene cluster. Here we show that a module of three adjacent genes within the wider biosynthetic gene cluster is required for avenacin acylation. Through the characterization of these genes and their encoded proteins we present a model of the subcellular organization of triterpenoid biosynthesis.


Assuntos
Avena/genética , Genes de Plantas , Família Multigênica , Saponinas/metabolismo , Triterpenos/metabolismo , Acilação , Aciltransferases/classificação , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos/patogenicidade , Avena/enzimologia , Avena/metabolismo , Regulação da Expressão Gênica de Plantas , Metilação , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Saponinas/genética , Relação Estrutura-Atividade , Nicotiana/genética , Nicotiana/metabolismo
2.
J Biol Chem ; 288(6): 3696-704, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23258535

RESUMO

Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.


Assuntos
Avena/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glicosiltransferases/biossíntese , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Saponinas/metabolismo , Acilação/fisiologia , Avena/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glicosiltransferases/genética , Família Multigênica/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Saponinas/genética
3.
Plant J ; 53(4): 645-60, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18269574

RESUMO

Plant development is critically dependent on the interactions between clonally unrelated cell layers. The cross-talk between layers can be addressed by studies of cell autonomy. Cell autonomy is a property of genetic mosaics composed of cells of differing genotypes. Broadly, if the phenotype of a mutant tissue reflects only its genotype and is unaffected by the presence of wild-type tissue, the trait is cell-autonomous. Conversely, if the phenotype of a mutant tissue reflects that of wild-type tissue in the mosaic, the trait is non-autonomous. Here we report a novel, versatile and robust method for studies of cell autonomy in Arabidopsis. Cell autonomy (CAUT) lines consist of a collection of homozygous stocks, each containing one of 76 mapped T-DNA inserts, each of which corrects the yellow ch-42 mutant to green (CH-42) by complementation. This has the effect of translocating the colour marker to 76 new locations around the genome. X-irradiation of heterozygous CAUT line seeds results in yellow sectors, with loss of the CH-42 transgene and adjacent wild-type genes. This property can be used to remove the wild-type copy of developmental genes in appropriate heterozygotes, resulting in yellow (ch-42) sectors that are hemizygous for the trait of interest. Such sectors can provide insight into cell autonomy. Experiments using the ap1, ap3, ag and clv1 mutants show that CAUT lines are useful in the study of cell autonomy.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Arabidopsis/citologia , Diferenciação Celular/genética , Genótipo , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
4.
Expert Rev Mol Diagn ; 5(1): 111-6, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15723597

RESUMO

Ligation-mediated single nucleotide polymorphism detection coupled with an efficient method of signal enhancement, such as rolling-circle amplification, hyperbranched rolling-circle amplification or PCR, has provided the foundation for the development of variable single nucleotide polymorphism genotyping and analyzing methods for different applications. Several methods based on the above approaches have been developed, enabling rapid genotyping of a large number of single nucleotide polymorphisms directly from a small amount of genomic DNA and large-scale multiplex single nucleotide polymorphism (>1000 single nucleotide polymorphisms per assay) analysis on microarrays. This review categorizes different approaches and describes the principles of each approach for single nucleotide polymorphism detection. Possible future research directions including the development of optimized methods for analysis of cytologic samples and other applications are also discussed.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sondas Moleculares
5.
Science ; 335(6076): 1621-3, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22461611

RESUMO

Transcription termination is emerging as an important component of gene regulation necessary to partition the genome and minimize transcriptional interference. We have discovered a role for the Arabidopsis RNA silencing enzyme DICER-LIKE 4 (DCL4) in transcription termination of an endogenous Arabidopsis gene, FCA. DCL4 directly associates with FCA chromatin in the 3' region and promotes cleavage of the nascent transcript in a domain downstream of the canonical polyA site. In a dcl4 mutant, the resulting transcriptional read-through triggers an RNA interference-mediated gene silencing of a transgene containing the same 3' region. We conclude that DCL4 promotes transcription termination of the Arabidopsis FCA gene, reducing the amount of aberrant RNA produced from the locus.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III/metabolismo , Transcrição Gênica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Mutação , Poliadenilação , Estrutura Terciária de Proteína , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/química , Ribonuclease III/genética , Transgenes
6.
Plant Cell ; 21(8): 2473-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19684243

RESUMO

Serine carboxypeptidase-like (SCPL) proteins have recently emerged as a new group of plant acyltransferases. These enzymes share homology with peptidases but lack protease activity and instead are able to acylate natural products. Several SCPL acyltransferases have been characterized to date from dicots, including an enzyme required for the synthesis of glucose polyesters that may contribute to insect resistance in wild tomato (Solanum pennellii) and enzymes required for the synthesis of sinapate esters associated with UV protection in Arabidopsis thaliana. In our earlier genetic analysis, we identified the Saponin-deficient 7 (Sad7) locus as being required for the synthesis of antimicrobial triterpene glycosides (avenacins) and for broad-spectrum disease resistance in diploid oat (Avena strigosa). Here, we report on the cloning of Sad7 and show that this gene encodes a functional SCPL acyltransferase, SCPL1, that is able to catalyze the synthesis of both N-methyl anthraniloyl- and benzoyl-derivatized forms of avenacin. Sad7 forms part of an operon-like gene cluster for avenacin synthesis. Oat SCPL1 (SAD7) is the founder member of a subfamily of monocot-specific SCPL proteins that includes predicted proteins from rice (Oryza sativa) and other grasses with potential roles in secondary metabolism and plant defense.


Assuntos
Aciltransferases/fisiologia , Anti-Infecciosos/metabolismo , Avena/enzimologia , Avena/metabolismo , Carboxipeptidases/fisiologia , Imunidade Inata/fisiologia , Proteínas de Plantas/fisiologia , Aciltransferases/química , Aciltransferases/classificação , Aciltransferases/genética , Sequência de Aminoácidos , Avena/genética , Carboxipeptidases/química , Carboxipeptidases/classificação , Carboxipeptidases/genética , Imunidade Inata/genética , Immunoblotting , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Multimerização Proteica , Homologia de Sequência de Aminoácidos
7.
Plant Cell ; 20(1): 201-12, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18203919

RESUMO

Avenacins are antimicrobial triterpene glycosides that are produced by oat (Avena) roots. These compounds confer broad-spectrum resistance to soil pathogens. Avenacin A-1, the major avenacin produced by oats, is strongly UV fluorescent and accumulates in root epidermal cells. We previously defined nine loci required for avenacin synthesis, eight of which are clustered. Mutants affected at seven of these (including Saponin-deficient1 [Sad1], the gene for the first committed enzyme in the pathway) have normal root morphology but reduced root fluorescence. In this study, we focus on mutations at the other two loci, Sad3 (also within the gene cluster) and Sad4 (unlinked), which result in stunted root growth, membrane trafficking defects in the root epidermis, and root hair deficiency. While sad3 and sad4 mutants both accumulate the same intermediate, monodeglucosyl avenacin A-1, the effect on avenacin A-1 glucosylation in sad4 mutants is only partial. sad1/sad1 sad3/sad3 and sad1/sad1 sad4/sad4 double mutants have normal root morphology, implying that the accumulation of incompletely glucosylated avenacin A-1 disrupts membrane trafficking and causes degeneration of the epidermis, with consequential effects on root hair formation. Various lines of evidence indicate that these effects are dosage-dependent. The significance of these data for the evolution and maintenance of the avenacin gene cluster is discussed.


Assuntos
Avena/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Saponinas/biossíntese , Alelos , Avena/citologia , Avena/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Fluorescência , Dosagem de Genes , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/ultraestrutura , Saponinas/química , Saponinas/metabolismo , Esteróis/química , Esteróis/metabolismo
8.
Proc Natl Acad Sci U S A ; 103(49): 18848-53, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17124172

RESUMO

CYP51 sterol demethylases are the only cytochrome P450 enzymes with a conserved function across the animal, fungal, and plant kingdoms (in the synthesis of essential sterols). These highly conserved enzymes, which are important targets for cholesterol-lowering drugs, antifungal agents, and herbicides, are regarded as the most ancient member cytochrome P450 family. Here we present a report of a CYP51 enzyme that has acquired a different function. We show that the plant enzyme AsCYP51H10 is dispensable for synthesis of essential sterols and has been recruited for the production of antimicrobial compounds (avenacins) that confer disease resistance in oats. The AsCyp51H10 gene is synonymous with Sad2, a gene that we previously had defined by mutation as being required for avenacin synthesis. In earlier work, we showed that Sad1, the gene encoding the first committed enzyme in the avenacin pathway (beta-amyrin synthase), had arisen by duplication and divergence of a cycloartenol synthase-like gene. Together these data indicate an intimate evolutionary connection between the sterol and avenacin pathways. Sad1 and Sad2 lie within 70 kb of each other and are expressed specifically in the epidermal cells of the root tip, the site of accumulation of avenacins. These findings raise intriguing questions about the recruitment, coevolution, and regulation of the components of this specialized defense-related metabolic pathway.


Assuntos
Avena/enzimologia , Sequência Conservada , Sistema Enzimático do Citocromo P-450/fisiologia , Doenças das Plantas/genética , Esteróis/metabolismo , Sequência de Aminoácidos , Animais , Avena/genética , Dados de Sequência Molecular , Família Multigênica , Doenças das Plantas/microbiologia , Saponinas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa