Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 39(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28418112

RESUMO

Microfluidic devices allow the manipulation of fluids down to the micrometer scale and are receiving a lot of attention for applications where low volumes and high throughputs are required. In these micro channels, laminar flow usually dominates, which requires long residence times of the fluids, limiting the flow speed and throughput. Here a switchable passive mixer has been developed to control mixing and to easily clean microchannels. The mixer is based on a photoresponsive spiropyran based hydrogel of which the dimensions can be tuned by changing the intensity of the light. The size-tunable gels have been used to fabricate a passive slanted groove mixer that can be switched off by light allowing to change mixing of microfluidics to non-mixed flows. These findings open new possibilities for multi-purpose microfluidic devices where mixers and valves can be tuned by light.


Assuntos
Benzopiranos/química , Hidrogéis/química , Indóis/química , Técnicas Analíticas Microfluídicas , Nitrocompostos/química , Luz , Estrutura Molecular , Processos Fotoquímicos
2.
ACS Appl Polym Mater ; 4(8): 6148-6155, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35991304

RESUMO

Using paperboard as packaging material is more sustainable than using plastic. To be a viable replacement, however, the barrier properties of paperboard need to be improved. Applying a waterborne barrier coating for both oil and water is an attractive method to improve the barrier performance of paperboard food packaging. However, not much is known about the oil and water barrier properties and penetration pathways of such coatings. Here, an alkali-soluble resin (ASR)-stabilized waterborne emulsion polymer was prepared and applied on untreated paperboard. Its performance as oil and water barrier coating was investigated, and the penetration pathways for both oil and water through the coating are discussed. The presence of surface defects in the coating applied on the paperboard strongly affects both the oil and water barrier properties, but the coating's morphology and chemical nature only play a major role in the water barrier performance. The optimal barrier performance for oil and water was achieved when adding 5 wt % isopropanol (IPA) to the dispersion and applying two coating layers on paperboard. The IPA improves film formation and reduces the number of surface defects, which is explained by a more favorable spreading coefficient of the coating over the paperboard substrate. These insights will help to improve the oil and water barrier properties of polymer-coated paperboard for more sustainable packaging applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa