Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(6): 2630-6, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24432974

RESUMO

Water-soluble derivatives of gadolinium-containing metallofullerenes have been considered to be excellent candidates for new magnetic resonance imaging (MRI) contrast agents because of their high relaxivity and characteristic encapsulation of the lanthanide ions (Gd(3+)), preventing their release into the bioenvironment. The trimetallic nitride template endohedral metallofullerenes (TNT EMFs) have further advantages of high stability, high relative yield, and encapsulation of three Gd(3+) ions per molecule as illustrated by the previously reported nearly spherical, Gd3N@I(h)-C80. In this study, we report the preparation and functionalization of a lower-symmetry EMF, Gd3N@C(s)-C84, with a pentalene (fused pentagons) motif and an egg-shaped structure. The Gd3N@C84 derivative exhibits a higher (1)H MR relaxivity compared to that of the Gd3N@C80 derivative synthesized the same way, at low (0.47 T), medium (1.4 T), and high (9.4 T) magnetic fields. The Gd3N@C(s)-C84 derivative exhibits a higher hydroxyl content and aggregate size, as confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) experiments, which could be the main reasons for the higher relaxivity.


Assuntos
Meios de Contraste/química , Fulerenos/química , Gadolínio/química , Imageamento por Ressonância Magnética
2.
Langmuir ; 30(6): 1580-7, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24479874

RESUMO

We report the fabrication of magnetic particles comprised of clusters of iron oxide nanoparticles, 7.4 nm mean diameter, stabilized by a biocompatible, amphiphilic diblock copolymer, poly(ethylene oxide-b-D,L-lactide). Particles with quantitative incorporation of up to 40 wt % iron oxide and hydrodynamic sizes in the range of 80-170 nm were prepared. The particles consist of hydrophobically modified iron oxide nanoparticles within the core-forming polylactide block with the poly(ethylene oxide) forming a corona to afford aqueous dispersibility. The transverse relaxivities (r2) increased with average particle size and exceeded 200 s(-1) mM Fe(-1) at 1.4 T and 37 °C for iron oxide loadings above 30 wt %. These experimental relaxivities typically agreed to within 15% with the values predicted using analytical models of transverse relaxivity and cluster (particle core) size distributions derived from cryo-TEM measurements. Our results show that the theoretical models can be used for the rational design of biocompatible MRI contrast agents with tailored compositions and size distributions.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Meios de Contraste/síntese química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas de Magnetita/ultraestrutura , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Polimerização
3.
Microsc Microanal ; 20(2): 338-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24331164

RESUMO

Understanding the fundamental properties of macromolecules has enhanced the development of emerging technologies used to improve biomedical research. Currently, there is a critical need for innovative platforms that can illuminate the function of biomedical reagents in a native environment. To address this need, we have developed an in situ approach to visualize the dynamic behavior of biomedically relevant macromolecules at the nanoscale. Newly designed silicon nitride devices containing integrated "microwells" were used to enclose active macromolecular specimens in liquid for transmission electron microscopy imaging purposes.We were able to successfully examine novel magnetic resonance imaging contrast reagents, micelle suspensions, liposome carrier vehicles, and transcribing viral assemblies. With each specimen tested, the integrated microwells adequately maintained macromolecules in discrete local environments while enabling thin liquid layers to be produced.


Assuntos
Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Manejo de Espécimes/métodos , Meios de Contraste/análise , Lipossomos/ultraestrutura , Micelas , Vírus/ultraestrutura
4.
J Mater Chem B ; 1(8): 1142-1149, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25328679

RESUMO

Magnetic Block Ionomer Clusters (MBIClusters) with hydrophilic ionic cores and nonionic coronas have been prepared that have ultrahigh transverse NMR relaxivities together with capacities for incorporating high concentrations of polar antibiotic payloads. Magnetite-polymer nanoparticles were assembled by adsorbing the polyacrylate block of an aminofunctional poly(ethylene oxide-b-acrylate) (H2N-PEO-b-PAA) copolymer onto magnetite nanoparticles. The PEO blocks extended into aqueous media to keep the nanoparticles dispersed. Amines at the tips of the H2N-PEO corona were then linked through reaction with a PEO diacrylate oligomer to yield MBIClusters where the metal oxide in the precursor nanoparticles were distinctly separated by the hydrophilic polymer. The intensity average spacing between the magnetite nanoparticles within the clusters was estimated to be ~50 nm. These MBIClusters with hydrophilic intra-cluster space had transverse relaxivities (r2's) that increased from 190 to 604 s-1 mM Fe-1 measured at 1.4 T and 37 °C as their average sizes increased. The clusters were loaded with up to ~38 wt% of the multi-cationic drug gentamicin. MRI scans focused on the livers of mice demonstrated that these MBIClusters are sensitive contrast agents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa