Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
4.
Clim Change ; 166(3-4)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34912130

RESUMO

Environmental health indicators are helpful for tracking and communicating complex health trends, informing science and policy decisions, and evaluating public health actions. When provided on a national scale, they can help inform the general public, policy makers, and public health professionals about important trends in exposures and how well public health systems are preventing those exposures from causing adverse health outcomes. There is a growing need to understand national trends in exposures and health outcomes associated with climate change and the effectiveness of climate adaptation strategies for health. To date, most indicators for health implications of climate change have been designed as independent, individual metrics. This approach fails to take into account how exposure-outcome pathways for climate-attributable health outcomes involve multiple, interconnected components. We propose reframing climate change and health indicators as a linked system of indicators, which can be described as follows: upstream climate drivers affect environmental states, which then determine human exposures, which ultimately lead to health outcomes; these climate-related risks are modified by population vulnerabilities and adaptation strategies. We apply this new conceptual framework to three illustrative climate-sensitive health outcomes and associated exposure-outcome pathways: pollen allergies and asthma, West Nile Virus infection, and vibriosis.

6.
Environ Health Perspect ; 115(11): 1654-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18007999

RESUMO

In this report we present the findings from a nanotoxicology workshop held 6-7 April 2006 at the Woodrow Wilson International Center for Scholars in Washington, DC. Over 2 days, 26 scientists from government, academia, industry, and nonprofit organizations addressed two specific questions: what information is needed to understand the human health impact of engineered nanoparticles and how is this information best obtained? To assess hazards of nanoparticles in the near-term, most participants noted the need to use existing in vivo toxicologic tests because of their greater familiarity and interpretability. For all types of toxicology tests, the best measures of nanoparticle dose need to be determined. Most participants agreed that a standard set of nanoparticles should be validated by laboratories worldwide and made available for benchmarking tests of other newly created nanoparticles. The group concluded that a battery of tests should be developed to uncover particularly hazardous properties. Given the large number of diverse materials, most participants favored a tiered approach. Over the long term, research aimed at developing a mechanistic understanding of the numerous characteristics that influence nanoparticle toxicity was deemed essential. Predicting the potential toxicity of emerging nanoparticles will require hypothesis-driven research that elucidates how physicochemical parameters influence toxic effects on biological systems. Research needs should be determined in the context of the current availability of testing methods for nanoscale particles. Finally, the group identified general policy and strategic opportunities to accelerate the development and implementation of testing protocols and ensure that the information generated is translated effectively for all stakeholders.


Assuntos
Substâncias Perigosas/análise , Substâncias Perigosas/toxicidade , Nanopartículas/análise , Nanopartículas/toxicidade , Nanotecnologia/métodos , Medição de Risco/métodos , Toxicologia/métodos , Engenharia Genética/métodos , Humanos , Saúde Pública
7.
Environ Res Lett ; 12(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38605885

RESUMO

Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2°C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission 'Managing the health effects of climate change' through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.

8.
Ann N Y Acad Sci ; 1076: 331-42, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17119213

RESUMO

Nanotechnology, the design and manipulation of materials at the atomic scale, may well revolutionize many of the ways our society manufactures products, produces energy, and treats diseases. Innovative nanotechnology products are already reaching the market in a wide variety of consumer products. Some of the observed properties of nanomaterials call into question the adequacy of current methods for determining hazard and exposure, and for controlling resulting risks. Given the limitations of existing regulatory tools and policies, two distinct kinds of initiatives are urgently needed: first, a major increase in the federal investment nanomaterial risk research, and second, rapid development and implementation of voluntary standards of care pending development of adequate regulatory safeguards. The U.S. government should increase federal funding for nanomaterial risk research under the National Nanotechnology Initiative to at least $100 million annually for the next several years. Several voluntary programs are currently at various stages of evolution, though the eventual outputs of each of these are still far from clear. Ultimately, effective regulatory safeguards, harmonized globally, are necessary to provide a level playing field for industry while adequately protecting human health and the environment.


Assuntos
Conservação dos Recursos Naturais , Nanotecnologia , Exposição Ocupacional , Saúde Pública , Humanos , Saúde Ocupacional
9.
Environ Health Perspect ; 113(7): 818-22, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16002368

RESUMO

New scientific tools spawned by the genomics revolution promise to improve our ability to identify causative factors in human diseases. But as these new tools elucidate the complex interactions between chemical toxins and biologic systems, the strain on traditional ways of understanding toxic effects grows. Despite major advances in the science and technology of these new toxicogenomics tools, scientific and political complexities threaten to delay the use of toxicogenomics to further the public interest or--worse--to advance its use initially to weaken the regulation and safety of widely used chemicals. To gain further insight into the scientific and political landscape of the new toxicology, we interviewed 27 experts from a variety of disciplines and sectors. Interviewees expressed widespread agreement that the new toxicology promises a significant increase in the amount of information available on toxic effects of chemicals. But the interviews show that the promise of the new toxicology will be realized only if technical and political obstacles can be overcome. Although scientific rigor is necessary for the new toxicology to move forward, the scientific and public-interest communities must ensure that inappropriate definitions of rigor, as well as proprietary interests, do not create unnecessary barriers to more effective public health protection.


Assuntos
Opinião Pública , Toxicogenética , Expressão Gênica , Humanos , Fenótipo , Saúde Pública
10.
Environ Health Perspect ; 122(5): 447-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24583270

RESUMO

BACKGROUND: Policy decisions regarding climate change mitigation are increasingly incorporating the beneficial and adverse health impacts of greenhouse gas emission reduction strategies. Studies of such co-benefits and co-harms involve modeling approaches requiring a range of analytic decisions that affect the model output. OBJECTIVE: Our objective was to assess analytic decisions regarding model framework, structure, choice of parameters, and handling of uncertainty when modeling health co-benefits, and to make recommendations for improvements that could increase policy uptake. METHODS: We describe the assumptions and analytic decisions underlying models of mitigation co-benefits, examining their effects on modeling outputs, and consider tools for quantifying uncertainty. DISCUSSION: There is considerable variation in approaches to valuation metrics, discounting methods, uncertainty characterization and propagation, and assessment of low-probability/high-impact events. There is also variable inclusion of adverse impacts of mitigation policies, and limited extension of modeling domains to include implementation considerations. Going forward, co-benefits modeling efforts should be carried out in collaboration with policy makers; these efforts should include the full range of positive and negative impacts and critical uncertainties, as well as a range of discount rates, and should explicitly characterize uncertainty. We make recommendations to improve the rigor and consistency of modeling of health co-benefits. CONCLUSION: Modeling health co-benefits requires systematic consideration of the suitability of model assumptions, of what should be included and excluded from the model framework, and how uncertainty should be treated. Increased attention to these and other analytic decisions has the potential to increase the policy relevance and application of co-benefits modeling studies, potentially helping policy makers to maximize mitigation potential while simultaneously improving health.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Efeito Estufa , Humanos , Modelos Teóricos
11.
Environ Toxicol Chem ; 32(1): 62-78, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23147420

RESUMO

Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes.


Assuntos
Mudança Climática , Poluentes Ambientais/toxicidade , Clima , Meio Ambiente , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise , Humanos , Modelos Químicos , Risco , Medição de Risco
12.
Environ Health Perspect ; 121(10): 1120-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872398

RESUMO

BACKGROUND: Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. OBJECTIVE: We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure-response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. DATA SOURCES: As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. SYNTHESIS: The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure-response relationships. CONCLUSIONS: Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure-response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain.


Assuntos
Poluição do Ar/análise , Saúde Ambiental , Monitoramento Ambiental , Habitação/normas , Poluição do Ar/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Humanos
13.
Environ Toxicol Chem ; 32(1): 13-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097130

RESUMO

This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled "The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry." The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners.


Assuntos
Mudança Climática , Meio Ambiente , Fundações , Química , Clima , Ecotoxicologia , Educação , Poluentes Ambientais/toxicidade , Poluição Ambiental , Humanos , Cooperação Internacional , Medição de Risco , Ciência
14.
Environ Health Perspect ; 121(4): 399-404, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23552460

RESUMO

BACKGROUND: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. OBJECTIVES: In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. METHODS: A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. RESULTS: This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. CONCLUSIONS: Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH's strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health.


Assuntos
Pesquisa Biomédica/classificação , Mudança Climática , Saúde Ambiental , National Institutes of Health (U.S.) , Saúde Pública , Pesquisa Biomédica/economia , Humanos , Projetos de Pesquisa , Estados Unidos
19.
J Occup Environ Med ; 51(1): 33-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19136871

RESUMO

Climate change can be expected to have differential effects on different subpopulations. Biological sensitivity, socioeconomic factors, and geography may each contribute to heightened risk for climate-sensitive health outcomes, which include heat stress, air pollution health effects, extreme weather event health effects, water-, food-, and vector-borne illnesses. Particularly vulnerable subpopulations include children, pregnant women, older adults, impoverished populations, people with chronic conditions and mobility and cognitive constraints, outdoor workers, and those in coastal and low-lying riverine zones. For public health planning, it is critical to identify populations that may experience synergistic effects of multiple risk factors for health problems, both related to climate change and to other temporal trends, with specific geographic factors that convey climate-related risks.


Assuntos
Clima , Planejamento em Desastres , Saúde Ambiental , Populações Vulneráveis , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Tempestades Ciclônicas , Feminino , Geografia , Efeito Estufa , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Migrantes , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa