Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(43): 12753-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26314711

RESUMO

Fundamental understanding of non-precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high-performance Fe-N-C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7 V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9 V) with a destruction of active sites such as FeNx Cy species. Operando techniques combined with identical location-scanning transmission electron spectroscopy (IL-STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe-N-C catalysts in acidic medium.

2.
Phys Chem Chem Phys ; 16(34): 18454-62, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25070913

RESUMO

A comprehensive study of the degradation of a highly active Fe/N/C catalyst in acid medium is reported. An accelerated aging protocol was applied in the temperature range of 20 to 80 °C. From fundamental rotating-disc electrode studies and polymer electrolyte membrane fuel cell investigations combined with identical-location electron microscopy and Mößbauer spectroscopy at various stages of degradation, important insights into the structural and chemical changes of the catalyst were obtained. Most importantly, the degradation is strongly enhanced at elevated temperature, which is correlated to (i) increased carbon-corrosion rate and (ii) parallel non-preferential dissolution of the FeNx-based active sites. The degradation not only leads to a decreased ORR kinetics over time but also induces significant charge- and mass-transport resistances due to the collapse of the electrode structure.

3.
Angew Chem Int Ed Engl ; 53(51): 14250-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25354360

RESUMO

The efficiency of polymer electrolyte membrane fuel cells is strongly depending on the electrocatalyst performance, that is, its activity and stability. We have designed a catalyst material that combines both, the high activity for the decisive cathodic oxygen reduction reaction associated with nanoscale Pt alloys, and the excellent durability of an advanced nanostructured support. Owing to the high specific activity and large active surface area, the catalyst shows extraordinary mass activity values of 1.0 A mgPt(-1). Moreover, the material retains its initial active surface area and intrinsic activity during an extended accelerated aging test within the typical operation range. This excellent performance is achieved by confined-space alloying of the nanoparticles in a controlled manner in the pores of the support.

4.
Nat Commun ; 7: 13164, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767178

RESUMO

The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an 'electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.

5.
ACS Appl Mater Interfaces ; 7(23): 12914-22, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25989157

RESUMO

A versatile synthetic procedure to prepare hollow mesoporous carbon spheres (HMCS) is presented here. This approach is based on the deposition of a homogeneous hybrid polymer/silica composite shell on the outer surface of silica spheres through the surfactant-assisted simultaneous polycondensation of silica and polymer precursors in a colloidal suspension. Such composite materials can be further processed to give hollow mesoporous carbon spheres. The flexibility of this method allows for independent control of the morphological (i.e., core diameter and shell thickness) and textural features of the carbon spheres. In particular, it is demonstrated that the size of the pores within the mesoporous shell can be precisely tailored over an extended range (2-20 nm) by simply adjusting the reaction conditions. In a similar fashion, also the specific carbon surface area as well as the total shell porosity can be tuned. Most importantly, the textural features can be adjusted without affecting the dimension or the morphology of the spheres. The possibility to directly modify the shell textural properties by varying the synthetic parameters in a scalable process represents a distinct asset over the multistep hard-templating (nanocasting) routes. As an exemplary application, Pt nanoparticles were encapsulated in the mesoporous shell of HMCS. The resulting Pt@HMCS catalyst showed an enhanced stability during the oxygen reduction reaction, one of the most important reactions in electrocatalysis. This new synthetic procedure could allow the expansion, perhaps even beyond the lab-scale, of advanced carbon nanostructured supports for applications in catalysis.

6.
Beilstein J Nanotechnol ; 5: 44-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24605273

RESUMO

Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3-4 nm and two Pt@HGS catalysts with different particle size, 1-2 nm and 3-4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa