Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Arch Toxicol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743292

RESUMO

The phenylethylamine, 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'), is the prototypical example of an entactogen. Its original placement in highly restrictive drug usage categories in the US and UK, led to an inevitable restriction on MDMA neuroscience research and treatment. The dominant pharmacological effects of MDMA are its properties of release and inhibition of reuptake of amine neurotransmitter transporters for dopamine, norepinephrine, and serotonin. MDMA is an agonist of a wide range of receptors; its mood-altering effects are mediated via 5-HT2A receptors; this receptor may also mediate its effects on body temperature, analgesia, and anxiolytic properties. The mechanisms underlying MDMA's entactogenic properties of sociability and interpersonal closeness are not known but release and involvement of oxytocin, a peptide thought by some to be involved in social bonding, has been suggested. Adverse effects of MDMA are mostly transient; acute multiorgan adverse effects occurring during raves or crowded dance gatherings include dehydration, hyperthermia, seizures, rhabdomyolysis, disseminated intravascular coagulation, and acute renal failure. Deaths following MDMA taken by itself are rare compared to fatalities following coadministration with other drugs. A recent FDA-approved phase 3 clinical trial of MDMA for post-traumatic stress disorder (PTSD) led to the conclusion that MDMA-assisted therapy represents a potential breakthrough treatment meriting expedited clinical evaluation. Despite the ongoing deliberations by the FDA and EMA for approval of MDMA treatment of PTSD, the Australian Therapeutic Goods Administration (TGA) recently announced that after an evaluation of the therapeutic value, benefits, and risks of MDMA, it will permit its prescribing for the treatment of PTSD. Further examples of regulatory relaxation toward MDMA-assisted psychotherapy are underway. These include the FDA's recently approved clinical trial to assess MDMA's efficacy in the treatment of "asociality" in patients with schizophrenia and an open trial of MDMA treatment for alcohol-use disorder which showed decreased alcohol consumption. There are also ongoing studies on the little understood startle response, anxiety associated with life-threatening illness, and social anxiety in autistic adults.

2.
Br J Clin Pharmacol ; 89(11): 3232-3246, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430437

RESUMO

MRGPRX2, a novel Gaq -coupled human mast cell receptor, mediates non-immune adverse reactions without the involvement of antibody priming. Constitutively expressed by human skin mast cells, MRGPRX2 modulates cell degranulation producing pseudoallergies manifesting as itch, inflammation and pain. The term pseudoallergy is defined in relation to adverse drug reactions in general and immune/non-immune-mediated reactions in particular. A list of drugs with MRGPRX2 activity is presented, including a detailed examination of three important and widely used approved therapies: neuromuscular blockers, quinolones and opioids. For the clinician, the significance of MRGPRX2 is considered as an aid in distinguishing and ultimately identifying specific immune and non-immune inflammatory reactions. Anaphylactoid/anaphylactic reactions, neurogenic inflammation and inflammatory diseases with a clear or strongly suspected association with MRGPRX2 activation are examined. Inflammatory diseases include chronic urticaria, rosacea, atopic dermatitis, allergic contact dermatitis, mastocytosis, allergic asthma, ulcerative colitis and rheumatoid arthritis. MRGPRX2- and allergic IgE/FcεRI-mediated reactions may be clinically similar. Importantly, the usual testing procedures do not distinguish the two mechanisms. Currently, identification of MRGPRX2 activation and diagnosis of pseudoallergic reactions is generally viewed as a process of exclusion once other non-immune and immune processes, particularly IgE/FcεRI-mediated degranulation of mast cells, are ruled out. This does not take into account that MRGPRX2 signals via ß-arrestin, which can be utilized to detect MRGPRX2 activation by employing MRGPRX2 transfected cells to assess MRGPRX2 activation via two pathways, the G-protein-independent ß-arrestin pathway and the G-protein-dependent Ca2+ pathway. Testing procedures, interpretations for distinguishing mechanisms, patient diagnosis, agonist identification and drug safety evaluations are addressed.


Assuntos
Anafilaxia , Receptores de IgE , Humanos , Receptores de IgE/metabolismo , Receptores de Neuropeptídeos/metabolismo , Mastócitos/metabolismo , Inflamação , Imunoglobulina E , Proteínas de Ligação ao GTP/metabolismo , beta-Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo
3.
Arch Toxicol ; 97(10): 2575-2585, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537419

RESUMO

The increasing use of opioids in pregnant women has led to an alarming rise in the number of cases of neonates with drug-induced withdrawal symptoms known as neonatal opioid withdrawal syndrome (NOWS). NOWS is a toxic heterogeneous condition with many neurologic, autonomic, and gastrointestinal symptoms including poor feeding, irritability, tachycardia, hypertension, respiratory defects, tremors, hyperthermia, and weight loss. Paradoxically, for the management of NOWS, low doses of morphine, methadone, or buprenorphine are administered. NOWS is a polygenic disorder supported by studies of genomic variation in opioid-related genes. Single-nucleotide polymorphisms (SNPs) in CYP2B6 are associated with variations in NOWS infant responses to methadone and SNPs in the OPRM1, ABCB1, and COMT genes are associated with need for treatment and length of hospital stay. Epigenetic gene changes showing higher methylation levels in infants and mothers have been associated with more pharmacologic treatment in the case of newborns, and for mothers, longer infant hospital stays. Respiratory disturbances associated with NOWS are not well characterized. Little is known about the effects of opioids on developing neonatal respiratory control and respiratory distress (RD), a potential problem for survival of the neonate. In a rat model to test the effect of maternal opioids on the developing respiratory network and neonatal breathing, maternal-derived methadone increased apneas and lessened RD in neonates at postnatal (P) days P0 and P1. From P3, breathing normalized with age suggesting reorganization of respiratory rhythm-generating circuits at a time when the preBötC becomes the dominant inspiratory rhythm generator. In medullary slices containing the preBötC, maternal opioid treatment plus exposure to exogenous opioids showed respiratory activity was maintained in younger but not older neonates. Thus, maternal opioids blunt centrally controlled respiratory frequency responses to exogenous opioids in an age-dependent manner. In the absence of maternal opioid treatment, exogenous opioids abolished burst frequencies at all ages. Prenatal opioid exposure in children stunts growth rate and development while studies of behavior and cognitive ability reveal poor performances. In adults, high rates of attention deficit disorder, hyperactivity, substance abuse, and poor performances in intelligence and memory tests have been reported.


Assuntos
Síndrome de Abstinência Neonatal , Transtornos Relacionados ao Uso de Opioides , Insuficiência Respiratória , Síndrome de Abstinência a Substâncias , Humanos , Recém-Nascido , Lactente , Adulto , Criança , Feminino , Gravidez , Animais , Ratos , Analgésicos Opioides/toxicidade , Farmacogenética , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/complicações , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Síndrome de Abstinência a Substâncias/complicações , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Metadona/efeitos adversos , Síndrome de Abstinência Neonatal/genética , Síndrome de Abstinência Neonatal/complicações , Síndrome de Abstinência Neonatal/tratamento farmacológico , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/genética
4.
Arch Toxicol ; 97(2): 359-375, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36344690

RESUMO

Insights into the pathophysiology of many non-immune-mediated drug reactions referred to as toxicities, sensitivities, intolerances, or pseudoallergies have resulted from research identifying the mastocyte-related G-protein-coupled receptor (GPCR) member X2 (MRGPRX2), a human mast cell receptor mediating adverse reactions without the involvement of antibody priming. Opioid-induced degranulation of mast cells, particularly morphine, provoking release of histamine and other preformed mediators and causing hemodynamic and cutaneous changes seen as flushing, headache and wheal and flare reactions in the skin, is an example of results of MRGPRX2 activation. Opioids including morphine, codeine, dextromethorphan and metazocine as well as endogenous prodynorphin opioid peptides activate MRGPRX2 at concentrations causing mast cell degranulation. Unlike the canonical opioid receptors, MRGPRX2 shows stereochemical recognition preference for dextro rather than levo opioid enantiomers. Opioid analgesic drugs (OADs) display a range of histamine-releasing potencies from the strong releaser morphine to doubtful releasers like hydromorphone and the non-releaser fentanyl. Whether there is a correlation between histamine release by individual OADs, MRGPRX2 activation, and presence or absence of adverse cutaneous effects is not known. To investigate the question, ongoing research with recently pursued methodologies and strategies employing basophil and mast cell tests resulting from MRGPRX2 insights should help to elucidate whether or not an opioid's histamine-releasing potency, and its property of provoking an adverse reaction, are each a reflection of its activation of MRGPRX2.


Assuntos
Analgésicos Opioides , Hipersensibilidade , Humanos , Analgésicos Opioides/toxicidade , Histamina/farmacologia , Receptores de Neuropeptídeos , Receptores Acoplados a Proteínas G , Derivados da Morfina/farmacologia , Mastócitos , Degranulação Celular , Proteínas do Tecido Nervoso
5.
Platelets ; 33(4): 562-569, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34348059

RESUMO

Experiments were undertaken to identify the nature of a previously identified inhibitor of PAF-induced platelet aggregation (PA) in human saliva. Human saliva fractionated by preparative thin layer chromatography (TLC) yielded a fraction that co-migrated with fatty acids (FAs) and inhibited PAF-induced aggregation of platelets. Synthetic FAs tested for their capacities to inhibit 0.1 nM PAF-induced PA showed that only the cis-unsaturated compounds were inhibitory with activities of some of the polyunsaturated FAs (PUFA) reaching almost 100% at 20 µM. Eicosapentanoic acid (EPA) and 8,11,14-eicosatrienoic acid also deaggregated the PAF-induced aggregates. With the exception of oleic acid (OLA), cis-monounsaturated FAs, and elaidic acid, the trans isomer of OLA, were poor inhibitors. In a direct comparison with other platelet agonists, ADP, thrombin, and ionophore A23187, the active saliva fraction and selected individual FAs inhibited, to greater or lesser extent, PA induced by each of the agonists. EPA, OLA, linoleic acid (LNA), and the active saliva fraction were potent inhibitors of ADP-induced PA, EPA completely inhibited thrombin-induced PA and the saliva fraction showed only weak - moderate inhibitory activity to both thrombin- and ionophore A23187-induced PA. Other reports of endogenous PAF inhibitors in mammalian tissues are compared to the present results. PAF can trigger and amplify inflammatory cascades suggesting a possible modulation role for cis-unsaturated FAs in some diseases.


Assuntos
Fator de Ativação de Plaquetas , Agregação Plaquetária , Difosfato de Adenosina/farmacologia , Animais , Plaquetas , Calcimicina/análise , Calcimicina/farmacologia , Ácidos Graxos/análise , Ácidos Graxos/farmacologia , Humanos , Ionóforos/análise , Ionóforos/farmacologia , Mamíferos , Fator de Ativação de Plaquetas/análise , Fator de Ativação de Plaquetas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Saliva/química , Trombina/farmacologia
6.
Arch Toxicol ; 96(8): 2247-2260, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471232

RESUMO

Opioid-induced respiratory depression (OIRD), the primary cause of opioid-induced death, is the neural depression of respiratory drive which, together with a decreased level of consciousness and obstructive sleep apnea, cause ventilatory insufficiency. Variability of responses to opioids and individual differences in physiological and neurological states (e.g., anesthesia, sleep-disordered breathing, concurrent drug administration) add to the risk. Multiple sites can independently exert a depressive effect on breathing, making it unclear which sites are necessary for the induction of OIRD. The generator of inspiratory rhythm is the preBötzinger complex (preBötC) in the ventrolateral medulla. Other important brainstem respiratory centres include the pontine Kölliker-Fuse and adjacent parabrachial nuclei (KF/PBN) in the dorsal lateral pons, and the dorsal respiratory group in the medulla. Deletion of µ opioid receptors from neurons showed that the preBötC and KF/PBN contribute to OIRD with the KF as a respiratory modulator and the preBötC as inspiratory rhythm generator. Glutamatergic neurons expressing NK-1R and somatostatin involved in the autonomic function of breathing, and modulatory signal pathways involving GIRK and KCNQ potassium channels, remain poorly understood. Reversal of OIRD has relied heavily on naloxone which also reverses analgesia but mismatches between the half-lives of naloxone and opioids can make it difficult to clinically safely avoid OIRD. Maternal opioid use, which is rising, increases apneas and destabilizes neonatal breathing but opioid effects on maternal and neonatal respiratory circuits in neonatal abstinence syndrome (NAS) are not well understood. Methadone, administered to alleviate symptoms of NAS in humans, desensitizes rats to RD.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Analgésicos Opioides/toxicidade , Animais , Naloxona/farmacologia , Ratos , Receptores Opioides mu , Centro Respiratório/fisiologia , Insuficiência Respiratória/induzido quimicamente
7.
Arch Toxicol ; 95(8): 2627-2642, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974096

RESUMO

Opioid-induced respiratory depression is potentially life-threatening and often regarded as the main hazard of opioid use. Main cause of death is cardiorespiratory arrest with hypoxia and hypercapnia. Respiratory depression is mediated by opioid µ receptors expressed on respiratory neurons in the CNS. Studies on the major sites in the brainstem mediating respiratory rate suppression, the pre-BÓ§tzinger complex and parabrachial complex (including the KÓ§lliker Fuse nucleus), have yielded conflicting findings and interpretations but recent investigations involving deletion of µ receptors from neurons have led to greater consensus. Some opioid analgesic drugs are histamine releasers. The range of clinical effects of released histamine include increased cardiac output due to an increase in heart rate, increased force of myocardial contraction, and a dilatatory effect on small blood vessels leading to flushing, decreased vascular resistance and hypotension. Resultant hemodynamic changes do not necessarily relate directly to the concentration of histamine in plasma due to a range of variables including functional differences between mast cells and histamine-induced anaphylactoid reactions may occur less often than commonly believed. Opioid-induced histamine release rarely if ever provokes bronchospasm and histamine released by opioids in normal doses does not lead to anaphylactoid reactions or result in IgE-mediated reactions in normal patients. Hypersensitivities to opioids, mainly some skin reactions and occasional type I hypersensitivities, chiefly anaphylaxis and urticaria, are uncommon. Hypersensitivities to morphine, codeine, heroin, methadone, meperidine, fentanyl, remifentanil, buprenorphine, tramadol, and dextromethorphan are summarized. In 2016, the FDA issued a Drug Safety Communication concerning the association of opioids with serotonin syndrome, a toxicity associated with raised intra-synaptic concentrations of serotonin in the CNS, inhibition of serotonin reuptake, and activation of 5-HT receptors. Opioids may provoke serotonin toxicity especially if administered in conjunction with other serotonergic medications. The increasing use of opioid analgesics and widespread prescribing of antidepressants and psychiatric medicines, indicates the likelihood of an increased incidence of serotonin toxicity in opioid-treated patients.


Assuntos
Analgésicos Opioides/efeitos adversos , Hipersensibilidade a Drogas/etiologia , Insuficiência Respiratória/induzido quimicamente , Analgésicos Opioides/administração & dosagem , Animais , Hemodinâmica/efeitos dos fármacos , Liberação de Histamina/efeitos dos fármacos , Humanos , Síndrome da Serotonina/induzido quimicamente
8.
Br J Anaesth ; 124(1): 44-62, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653394

RESUMO

Most cases of serotonin toxicity are provoked by therapeutic doses of a combination of two or more serotonergic drugs, defined as drugs affecting the serotonin neurotransmitter system. Common serotonergic drugs include many antidepressants, antipsychotics, and opioid analgesics, particularly fentanyl, tramadol, meperidine (pethidine), and methadone, but rarely morphine and other related phenanthrenes. Symptoms of serotonin toxicity are attributable to an effect on monoaminergic transmission caused by an increased synaptic concentration of serotonin. The serotonin transporter (SERT) maintains low serotonin concentrations and is important for the reuptake of the neurotransmitter into the presynaptic nerve terminals. Some opioids inhibit the reuptake of serotonin by inhibiting SERT, thus increasing the plasma and synaptic cleft serotonin concentrations that activate the serotonin receptors. Opioids that are good inhibitors of SERT (tramadol, dextromethorphan, methadone, and meperidine) are most frequently associated with serotonin toxicity. Tramadol also has a direct serotonin-releasing action. Fentanyl produces an efflux of serotonin, and binds to 5-hydroxytryptamine (5-HT)1A and 5-HT2A receptors, whilst methadone, meperidine, and more weakly tapentadol, bind to 5-HT2A but not 5-HT1A receptors. The perioperative period is a time where opioids and other serotonergic drugs are frequently administered in rapid succession, sometimes to patients with other serotonergic drugs in their system. This makes the perioperative period a relatively risky time for serotonin toxicity to occur. The intraoperative recognition of serotonin toxicity is challenging as it can mimic other serious syndromes, such as malignant hyperthermia, sepsis, thyroid storm, and neuroleptic malignant syndrome. Anaesthetists must maintain a heightened awareness of its possible occurrence and a readiness to engage in early treatment to avoid poor outcomes.


Assuntos
Analgésicos Opioides/efeitos adversos , Anestesiologistas , Serotoninérgicos/efeitos adversos , Síndrome da Serotonina/terapia , Febre/induzido quimicamente , Humanos , Complicações Intraoperatórias/induzido quimicamente , Síndrome da Serotonina/diagnóstico
10.
Arch Toxicol ; 92(8): 2457-2473, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29916050

RESUMO

Drugs may cause serotonin toxicity by a number of different mechanisms including inhibition of serotonin uptake and metabolism, increased serotonin synthesis and release, activation of serotonin receptors, and inhibition of cytochrome P450 oxidases. Some drug interactions involving opioids can increase intrasynaptic levels of serotonin, and opioid analgesic drugs are now recognized as being involved in some cases of serotonin toxicity especially if administered in conjunction with other serotonergic medications including monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and tricyclic antidepressants. In March 2016, the FDA issued a Drug Safety Communication concerning the association of the entire class of opioid pain medicines with serotonin toxicity. Reports of the involvement of individual opioids particularly tramadol, tapentadol, meperidine, methadone, oxycodone, fentanyl, and dextromethorphan are reviewed. While relevance to human serotonin toxicity of animal models, including many studies on rat brain synaptosomes, is questionable, important insights have recently been forthcoming from research utilizing 5-HT receptors, serotonin transporter (SERT), and knockout mice. In studies with human SERT-transfected human HEK293 cells, the synthetic opioids tramadol, meperidine, methadone, tapentadol, and dextromethorphan inhibited SERT, but fentanyl and a number of phenanthrenes including morphine and hydromorphone did not. Receptor ligand-binding assays revealed interaction of fentanyl with 5-HT1A receptors and interaction of meperidine, methadone, and fentanyl with 5-HT2A receptors. Although the opioids most often associated with serotonin toxicity in humans inhibit human SERT in vitro, fentanyl and oxycodone are not inhibitory even though their clinical involvement has been reported. This suggests some SERT-independent effects on the serotonin system in vivo. Heightened clinician awareness of the possibility of serotonin toxicity among patients taking opioids and serotonergic antidepressants is called for.


Assuntos
Analgésicos Opioides/efeitos adversos , Modelos Animais , Síndrome da Serotonina/induzido quimicamente , Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Interações Medicamentosas , Humanos , Síndrome da Serotonina/metabolismo
11.
Angew Chem Int Ed Engl ; 56(29): 8495-8499, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28513074

RESUMO

Δ-Myrtoxin-Mp1a (Mp1a), a 49-residue heterodimeric peptide from the venom of Myrmecia pilosula, comprises a 26-mer A chain and a 23-mer B chain connected by two disulfide bonds in an antiparallel arrangement. Combination of the individual synthetic chains through aerial oxidation remarkably resulted in the self-assembly of Mp1a as a homogenous product without the need for directed disulfide-bond formation. NMR analysis revealed a well-defined, unique structure containing an antiparallel α-helix pair. Dual polarization interferometry (DPI) analysis showed strong interaction with supported lipid bilayers and insertion within the bilayers. Mp1a caused non-specific Ca2+ influx in SH-SY5Y cells with a half maximal effective concentration (EC50 ) of 4.3 µm. Mp1a also displayed broad-spectrum antimicrobial activity, with the highest potency against Gram-negative Acinetobacter baumannii (MIC 25 nm). Intraplantar injection (10 µm) in mice elicited spontaneous pain and mechanical allodynia. Single- and two-chain mimetics of Mp1a revealed functional selectivity.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Peptídeos/farmacologia , Peçonhas/química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Formigas , Cálcio/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/administração & dosagem , Peptídeos/química
12.
J Neurosci ; 35(42): 14270-85, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490866

RESUMO

The neurobiology of post-traumatic stress disorder (PTSD) remains unclear. Intense stress promotes PTSD, which has been associated with exaggerated startle and deficient sensorimotor gating. Here, we examined the long-term sequelae of a rodent model of traumatic stress (repeated predator exposure) on amygdala systems that modulate startle and prepulse inhibition (PPI), an operational measure of sensorimotor gating. We show in rodents that repeated psychogenic stress (predator) induces long-lasting sensitization of basolateral amygdala (BLA) noradrenergic (NE) receptors (α1) via a corticotropin-releasing factor receptor 1 (CRF-R1)-dependent mechanism, and that these CRF1 and NE α1 receptors are highly colocalized on presumptive excitatory output projection neurons of the BLA. A profile identical to that seen with predator exposure was produced in nonstressed rats by intra-BLA infusions of CRF (200 ng/0.5 µl), but not by repeated NE infusions (20 µg/0.5 µl). Infusions into the adjacent central nucleus of amygdala had no effect. Importantly, the predator stress- or CRF-induced sensitization of BLA manifested as heightened startle and PPI deficits in response to subsequent subthreshold NE system challenges (with intra-BLA infusions of 0.3 µg/0.5 µl NE), up to 1 month after stress. This profile of effects closely resembles aspects of PTSD. Hence, we reveal a discrete neural pathway mediating the enhancement of NE system function seen in PTSD, and we offer a model for characterizing potential new treatments that may work by modulating this BLA circuitry. SIGNIFICANCE STATEMENT: The present findings reveal a novel and discrete neural substrate that could underlie certain core deficits (startle and prepulse inhibition) that are observed in post-traumatic stress disorder (PTSD). It is shown here that repeated exposure to a rodent model of traumatic stress (predator exposure) produces a long-lasting sensitization of basolateral amygdala noradrenergic substrates [via a corticotropin-releasing factor (CRF)-dependent mechanism] that regulate startle, which is exaggerated in PTSD. Moreover, it is demonstrated that the sensitized noradrenergic receptors colocalize with CRF1 receptors on output projection neurons of the basolateral amygdala. Hence, this stress-induced sensitization of noradrenergic receptors on basolateral nucleus efferents has wide-ranging implications for the numerous deleterious sequelae of trauma exposure that are seen in multiple psychiatric illnesses, including PTSD.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Norepinefrina/metabolismo , Reflexo de Sobressalto/fisiologia , Transtornos de Estresse Pós-Traumáticos/patologia , Estresse Psicológico/patologia , Estimulação Acústica , Análise de Variância , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Hormônio Liberador da Corticotropina/farmacologia , Furões , Glutamato Descarboxilase/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
14.
J Neurosci ; 34(12): 4318-25, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24647952

RESUMO

Amylin is a calcitonin-related peptide co-secreted with insulin, which produces satiety through brainstem-localized receptors; however, its effects in forebrain are poorly understood. The nucleus accumbens shell (AcbSh) exhibits among the densest concentrations of high-affinity amylin binding; nevertheless, these receptors have not been explored beyond one study showing dopamine antagonist-like effects of intra-Acb amylin on feeding and associated behavior (Baldo and Kelley, 2001). Here, we investigated whether intra-Acb amylin signaling modulates prepulse inhibition (PPI), a measure of sensorimotor gating deficient in several illnesses including schizophrenia. First, in situ hybridization revealed marked anatomical gradients for both receptor activity-modifying protein-1 (RAMP-1) and calcitonin receptor gene (CT-R) expression in striatum [coexpression of these genes yields a high-affinity amylin-1 receptor (AMY1-R)], with highest overlap in the medial AcbSh. Intra-AcbSh amylin infusions in rats (0, 30, and 100 ng) reversed amphetamine (AMPH)-induced PPI disruption without affecting baseline startle; dorsal striatal amylin infusions had no effect. Coinfusion of AC187 (20 µg), an antagonist for AMY1-R, blocked the ability of amylin to normalize AMPH-induced PPI disruption, showing the specificity of AcbSh amylin effects to the AMY1-R. Intra-AcbSh AC187 on its own disrupted PPI in a haloperidol-reversible manner (0.1 mg/kg). Thus, AMY1-R may be a potential target for the development of putative antipsychotics or adjunct treatments that oppose metabolic side effects of current medications. Moreover, AMY1-Rs may represent a novel way to modulate activity preferentially in ventral versus dorsal striatum.


Assuntos
Antipsicóticos/farmacologia , Gânglios da Base/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Proteína 1 Modificadora da Atividade de Receptores/genética , Receptores da Calcitonina/genética , Anfetamina/farmacologia , Animais , Gânglios da Base/metabolismo , Dopaminérgicos/farmacologia , Expressão Gênica , Fragmentos de Peptídeos/farmacologia , Ratos , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos
15.
J Neurosci ; 33(47): 18540-52, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24259576

RESUMO

Mu-opioid receptor (µOR) stimulation within ventral medial prefrontal cortex (vmPFC) induces feeding and hyperactivity, resulting possibly from recruitment of glutamate signaling in multiple vmPFC projection targets. We tested this hypothesis by analyzing Fos expression in vmPFC terminal fields after intra-vmPFC µOR stimulation, and by examining of the impact of glutamate receptor blockade in two feeding-related targets of vmPFC, the lateral-perifornical hypothalamic area (LH-PeF) and nucleus accumbens shell (Acb shell), upon behavioral effects elicited by intra-vmPFC µOR stimulation in rats. Intra-vmPFC infusion of the µOR agonist, DAMGO, provoked Fos expression in the dorsomedial sector of tuberal hypothalamus (including the perifornical area) and increased the percentage of Fos-expressing hypocretin/orexin-immunoreactive neurons in these zones. NMDA receptor blockade in the LH-PeF nearly eliminated intra-vmPFC DAMGO-induced food intake without altering DAMGO-induced hyperactivity. In contrast, blocking AMPA-type glutamate receptors within the Acb shell (the feeding-relevant subtype in this structure) antagonized intra-vmPFC DAMGO-induced hyperlocomotion but enhanced food intake. Intra-vmPFC DAMGO also elevated the breakpoint for sucrose-reinforced progressive-ratio responding; this effect was significantly enhanced by concomitant AMPA blockade in the Acb shell. Conversely, intra-Acb shell AMPA stimulation reduced breakpoint and increased nonspecific responding on the inactive lever. These data indicate intra-vmPFC µOR signaling jointly modulates appetitive motivation and generalized motoric activation through functionally dissociable vmPFC projection targets. These findings may shed light on the circuitry underlying disorganized appetitive responses in psychopathology; e.g., binge eating and opiate or alcohol abuse, disorders in which µORs and aberrant cortical activation have been implicated.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores Opioides mu/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Analgésicos Opioides/farmacologia , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Proteínas Oncogênicas v-fos/metabolismo , Orexinas , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Valina/análogos & derivados , Valina/farmacologia
16.
Cancer Metastasis Rev ; 32(3-4): 723-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24043487

RESUMO

More than 100 drugs are used to treat the many different cancers. They can be divided into agents with relatively broad, non-targeted specificity and targeted drugs developed on the basis of a more refined understanding of individual cancers and directed at specific molecular targets on different cancer cells. Individual drugs in both groups have been classified on the basis of their mechanism of action in killing cancer cells. The targeted drugs include proteasome inhibitors, toxic chimeric proteins and signal transduction inhibitors such as tyrosine kinase (non-receptor and receptor), serine/threonine kinase, histone deacetylase and mammalian target of rapamycin inhibitors. Increasingly used targeted vascular (VEGF) and platelet-derived endothelial growth factor blockade can provoke a range of pathological consequences. Many of the non-targeted drugs are cytotoxic, suppressing haematopoiesis as well as provoking cutaneous eruptions and vascular, lung and liver injury. Cytotoxic side effects of the targeted drugs occur less often and usually with less severity, but they show their own unusual adverse effects including, for example, a lengthened QT interval, a characteristic papulopustular rash, nail disorders and a hand-foot skin reaction variant. The term hypersensitivity is widely used across a number of disciplines but not always with the same definition in mind, and the terminology needs to be standardised. This is particularly apparent in cancer chemotherapy where anti-neoplastic drug-induced thrombocytopenia, neutropenia, anaemia, vascular disorders, liver injury and lung disease as well as many dermatological manifestations sometimes have an immune basis. The most insidious of all adverse consequences of targeted therapies, however, are tumour adaptation, increased malignancy and the invasive metastatic switch seen with anti-angiogenic drugs that inhibit the VEGF-A pathway. Adverse reactions to 44 non-targeted and 33 targeted, frequently used, chemotherapeutic drugs are presented together with discussions of diagnosis, premedications, desensitizations and importance of understanding the mechanisms underlying the various drug-induced reactions. There is need for wide-ranging acceptance of what constitutes a hypersensitivity reaction and for allergists to be more involved in the diagnosis, treatment and prevention of chemotherapeutic drug-induced hypersensitivity reactions.


Assuntos
Antineoplásicos/efeitos adversos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/imunologia , Neoplasias/complicações , Neoplasias/patologia , Animais , Antineoplásicos/classificação , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Citocinas/biossíntese , Dessensibilização Imunológica , Hipersensibilidade a Drogas/prevenção & controle , Hipersensibilidade a Drogas/terapia , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Pré-Medicação , Carga Tumoral , Síndrome de Lise Tumoral/diagnóstico , Síndrome de Lise Tumoral/etiologia , Síndrome de Lise Tumoral/prevenção & controle , Síndrome de Lise Tumoral/terapia
18.
Neuropsychopharmacology ; 48(13): 1952-1962, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37640922

RESUMO

Mu-opioid receptor (µ-OR) signaling in forebrain sites including nucleus accumbens (Acb) and ventromedial prefrontal cortex (vmPFC) modulates reward-driven feeding and may play a role in the pathophysiology of disordered eating. In preclinical models, intra-Acb or intra-vmPFC µ-OR stimulation causes overeating and vigorous responding for food rewards. These effects have been studied mainly in male animals, despite demonstrated sex differences and estrogen modulation of central reward systems. Hence, the present study investigated sex differences and estrogen modulation of intra-Acb and intra-vmPFC µ-OR-driven feeding behaviors. First, the dose-related effects of intra-Acb and intra-vmPFC infusions of the µ-OR-selective agonist, DAMGO, were compared among intact female, ovariectomized (OVX) female, and intact male rats. The DAMGO feeding dose-effect function was flattened in intact females relative to the robust, dose-dependent effects observed in OVX females and intact males. Thus, in intact females, intra-Acb DAMGO failed to elevate food intake relative to vehicle, while intra-vmPFC DAMGO elevated food intake, but to a smaller degree compared to males and OVX females. Next, to explore the possible role of estrogen in mediating the diminished DAMGO response observed in intact females, OVX rats were given intra-Acb or intra-vmPFC infusions of DAMGO either immediately after a subcutaneous injection of 17-beta-estradiol 3-benzoate (EB; 5 µg/0.1 mL) or 24 h after EB injection. Intra-Acb DAMGO effects were not changed at the immediate post-EB time point. At the delayed post-EB timepoint, significant lordosis was noted and the duration of intra-Acb DAMGO-driven feeding bouts was significantly reduced, with no change in the number of bouts initiated, locomotor hyperactivity, or Fos immunoreactivity in hypothalamic feeding and arousal systems. Similarly, EB failed to alter the motor-activational effects of intra-vmPFC DAMGO while reducing feeding. These findings indicate that delayed, presumably genomically mediated estrogen actions modulate the µ-OR-generated motivational state by reducing consummatory activity while sparing goal-approach and general arousal/activity. The results additionally suggest that EB regulation of consummatory activity occurs outside of forebrain-µ-OR control of hypothalamic systems.


Assuntos
Analgésicos Opioides , Comportamento Alimentar , Ratos , Feminino , Masculino , Animais , Analgésicos Opioides/farmacologia , Ratos Sprague-Dawley , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Núcleo Accumbens , Estrogênios/farmacologia , Atividade Motora , Receptores Opioides mu/metabolismo
19.
J Neurosci ; 31(9): 3249-60, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21368037

RESUMO

Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by µ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague Dawley rats, bilateral infusions of the µ-opioid agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) markedly increased intake of standard rat chow. When given a choice between palatable fat-enriched versus carbohydrate-enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor nonspecific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized δ-opioid, κ-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or α- or ß-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5-HT2A (5-hydroxytryptamine receptor 2A) receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, µ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders.


Assuntos
Carboidratos da Dieta/administração & dosagem , Comportamento Alimentar/fisiologia , Lobo Frontal/metabolismo , Hiperfagia/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Animais , Mapeamento Encefálico/métodos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Hiperfagia/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley
20.
Curr Res Toxicol ; 3: 100078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734228

RESUMO

Respiratory depression (RD) is the primary cause of death due to opioids. Opioids bind to mu (µ)-opioid receptors (MORs) encoded by the MOR gene Oprm1, widely expressed in the central and peripheral nervous systems including centers that modulate breathing. Respiratory centers are located throughout the brainstem. Experiments with Oprm1-deleted knockout (KO) mice undertaken to determine which sites are necessary for the induction of opioid-induced respiratory depression (OIRD) showed that the pre-Bötzinger complex (preBötC) and the pontine Kölliker-Fuse nucleus (KF) contribute equally to OIRD but RD was not totally eliminated. Morphine showed a differential influence on preBötC and KF neurons - low doses attenuated RD following deletion of MORs from preBötC neurons and an increase in apneas after high doses whereas deletion of MORs from KF neurons but not the preBötC attenuated RD at both high and low doses. In other KO mice studies, morphine administration after deletion of Oprm1 from both the preBötC and the KF/PBN neurons, led to the conclusion that both respiratory centres contribute to OIRD but the preBötC predominates. MOR-mediated post-synaptic activation of GIRK potassium channels has been implicated as a cause of OIRD. A complementary mechanism in the preBötC involving KCNQ potassium channels independent of MOR signaling has been described. Recent experiments in rats showing that morphine depresses normal, but not gasping breathing, cast doubt on the belief that eupnea, sighs, and gasps, are under the control of preBötC neurons. Methadone, administered to alleviate symptoms of neonatal opioid withdrawal syndrome (NOWES), desensitized rats to OIRD. Protection lost between postnatal days 1 and 2 coincides with the preBötC becoming the dominant generator of respiratory rhythm. Neonatal antidepressant exposure syndrome (NADES) and serotonin toxicity (ST) show similarities including RD. Enzyme CYP2D6 involved in opioid detoxification is polymorphic. Individuals of different CYP2D6 genotype may show increased, decreased, or no enzyme activity, contributing to the variability of patient responses to different opioids and OIRD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa