Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 571(7763): 90-94, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270480

RESUMO

Silicon dominates contemporary solar cell technologies1. But when absorbing photons, silicon (like other semiconductors) wastes energy in excess of its bandgap2. Reducing these thermalization losses and enabling better sensitivity to light is possible by sensitizing the silicon solar cell using singlet exciton fission, in which two excited states with triplet spin character (triplet excitons) are generated from a photoexcited state of higher energy with singlet spin character (a singlet exciton)3-5. Singlet exciton fission in the molecular semiconductor tetracene is known to generate triplet excitons that are energetically matched to the silicon bandgap6-8. When the triplet excitons are transferred to silicon they create additional electron-hole pairs, promising to increase cell efficiencies from the single-junction limit of 29 per cent to as high as 35 per cent9. Here we reduce the thickness of the protective hafnium oxynitride layer at the surface of a silicon solar cell to just eight angstroms, using electric-field-effect passivation to enable the efficient energy transfer of the triplet excitons formed in the tetracene. The maximum combined yield of the fission in tetracene and the energy transfer to silicon is around 133 per cent, establishing the potential of singlet exciton fission to increase the efficiencies of silicon solar cells and reduce the cost of the energy that they generate.

2.
Nat Mater ; 21(11): 1275-1281, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202994

RESUMO

Triplet-fusion-based photon upconversion holds promise for a wide range of applications, from photovoltaics to bioimaging. The efficiency of triplet fusion, however, is fundamentally limited in conventional molecular and polymeric systems by its spin dependence. Here, we show that the inherent tailorability of metal-organic frameworks (MOFs), combined with their highly porous but ordered structure, minimizes intertriplet exchange coupling and engineers effective spin mixing between singlet and quintet triplet-triplet pair states. We demonstrate singlet-quintet coupling in a pyrene-based MOF, NU-1000. An anomalous magnetic field effect is observed from NU-1000 corresponding to an induced resonance between singlet and quintet states that yields an increased fusion rate at room temperature under a relatively low applied magnetic field of 0.14 T. Our results suggest that MOFs offer particular promise for engineering the spin dynamics of multiexcitonic processes and improving their upconversion performance.


Assuntos
Estruturas Metalorgânicas , Polímeros/química
3.
Nano Lett ; 21(2): 1011-1016, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33445875

RESUMO

Infrared-to-visible photon upconversion could benefit applications such as photovoltaics, infrared sensing, and bioimaging. Solid-state upconversion based on triplet exciton annihilation sensitized by nanocrystals is one of the most promising approaches, albeit limited by relatively weak optical absorption. Here, we integrate the upconverting layers into a Fabry-Pérot microcavity with quality factor Q = 75. At the resonant wavelength λ = 980 nm, absorption increases 74-fold and we observe a 227-fold increase in the intensity of upconverted emission. The threshold excitation intensity is reduced by 2 orders of magnitude to a subsolar flux of 13 mW/cm2. We measure an external quantum efficiency of 0.06 ± 0.01% and a 2.2-fold increase in the generation yield of upconverted photons. Our work highlights the potential of triplet-triplet annihilation-based upconversion in low-intensity sensing applications and demonstrates the importance of photonic designs in addition to materials engineering to improve the efficiency of solid-state upconversion.

4.
Nano Lett ; 20(2): 1033-1040, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31888336

RESUMO

Magnetic domain walls are information tokens in both logic and memory devices and hold particular interest in applications such as neuromorphic accelerators that combine logic in memory. Here, we show that devices based on the electrical manipulation of magnetic domain walls are capable of implementing linear, as well as programmable nonlinear, functions. Unlike other approaches, domain-wall-based devices are ideal for application to both synaptic weight generators and thresholding in deep neural networks. Prototype micrometer-size devices operate with 8 ns current pulses and the energy consumption required for weight modulation is ≤16 pJ. Both speed and energy consumption compare favorably to other synaptic nonvolatile devices, with the expected energy dissipation for scaled 20 nm devices close to that of biological neurons.


Assuntos
Magnetismo , Memória/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Metabolismo Energético/fisiologia , Humanos
5.
J Chem Phys ; 151(12): 121102, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575171

RESUMO

Singlet exciton fission is a mechanism that could potentially enable solar cells to surpass the Shockley-Queisser efficiency limit by converting single high-energy photons into two lower-energy triplet excitons with minimal thermalization loss. The ability to make use of singlet exciton fission to enhance solar cell efficiencies has been limited, however, by the sparsity of singlet fission materials with triplet energies above the bandgaps of common semiconductors such as Si and GaAs. Here, we employ a high-throughput virtual screening procedure to discover new organic singlet exciton fission candidate materials with high-energy (>1.4 eV) triplet excitons. After exploring a search space of 4482 molecules and screening them using time-dependent density functional theory, we identify 88 novel singlet exciton fission candidate materials based on anthracene derivatives. Subsequent purification and characterization of several of these candidates yield two new singlet exciton fission materials: 9,10-dicyanoanthracene (DCA) and 9,10-dichlorooctafluoroanthracene (DCOFA), with triplet energies of 1.54 eV and 1.51 eV, respectively. These materials are readily available and low-cost, making them interesting candidates for exothermic singlet exciton fission sensitization of solar cells. However, formation of triplet excitons in DCA and DCOFA is found to occur via hot singlet exciton fission with excitation energies above ∼3.64 eV, and prominent excimer formation in the solid state will need to be overcome in order to make DCA and DCOFA viable candidates for use in a practical device.

6.
Nano Lett ; 17(9): 5869-5874, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28813156

RESUMO

Magnetic nanowires are the foundation of several promising nonvolatile computing devices, most notably magnetic racetrack memory and domain wall logic. Here, we determine the analog information capacity in these technologies, analyzing a magnetic nanowire containing a single domain wall. Although wires can be deliberately patterned with notches to define discrete positions for domain walls, the line edge roughness of the wire can also trap domain walls at dimensions below the resolution of the fabrication process, determining the fundamental resolution limit for the placement of a domain wall. Using a fractal model for the edge roughness, we show theoretically and experimentally that the analog information capacity for wires is limited by the self-affine statistics of the wire edge roughness, a relevant result for domain wall devices scaled to regimes where edge roughness dominates the energy landscape in which the walls move.

7.
J Am Chem Soc ; 139(13): 4894-4900, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345346

RESUMO

Emissive molecules comprising a donor and an acceptor bridged by 9,9-dimethylxanthene, were studied (XPT, XCT, and XtBuCT). The structures position the donor and acceptor with cofacial alignment at distances of 3.3-3.5 Å wherein efficient spatial charge transfer can occur. The quantum yields were enhanced by excluding molecular oxygen and thermally activated delayed fluorescence with lifetimes on the order of microseconds was observed. Although the molecules displayed low quantum yields in solution, higher quantum yields were observed in the solid state. Crystal structures revealed π-π intramolecular interactions between a donor and an acceptor, however, the dominant intermolecular interactions were C-H···π, which likely restrict the molecular dynamics to create aggregation-induced enhanced emission. Organic light emitting devices using XPT and XtBuCT as dopants displayed electroluminescence external quantum efficiencies as high as 10%.

8.
J Org Chem ; 81(11): 4789-96, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27211248

RESUMO

We describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.


Assuntos
Tiadiazóis/química , Cicloexanos/química , Indicadores e Reagentes , Medições Luminescentes , Teoria Quântica , Radiação , Temperatura , Tiadiazóis/síntese química
9.
J Am Chem Soc ; 137(37): 11908-11, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26367852

RESUMO

Donor-acceptor triptycences, TPA-QNX(CN)2 and TPA-PRZ(CN)2, were synthesized and their emissive properties were studied. They exhibited a blue-green fluorescence with emission lifetimes on the order of a microsecond in cyclohexane at room temperature. The long lifetime emission is quenched by O2 and is attributed to thermally activated delayed florescence (TADF). Unimolecular TADF is made possible by the separation and weak coupling due to homoconjugation of the HOMO and LUMO on different arms of the three-dimensional donor-acceptor triptycene. Organic light emitting devices (OLEDs) were fabricated using TPA-QNX(CN)2 and TPA-PRZ(CN)2 as emitters which displayed electroluminescence with efficiencies as high as 9.4% EQE.

10.
Nat Mater ; 13(11): 1039-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282507

RESUMO

Triplet excitons are ubiquitous in organic optoelectronics, but they are often an undesirable energy sink because they are spin-forbidden from emitting light and their high binding energy hinders the generation of free electron-hole pairs. Harvesting their energy is consequently an important technological challenge. Here, we demonstrate direct excitonic energy transfer from 'dark' triplets in the organic semiconductor tetracene to colloidal PbS nanocrystals, thereby successfully harnessing molecular triplet excitons in the near infrared. Steady-state excitation spectra, supported by transient photoluminescence studies, demonstrate that the transfer efficiency is at least (90 ± 13)%. The mechanism is a Dexter hopping process consisting of the simultaneous exchange of two electrons. Triplet exciton transfer to nanocrystals is expected to be broadly applicable in solar and near-infrared light-emitting applications, where effective molecular phosphors are lacking at present. In particular, this route to 'brighten' low-energy molecular triplet excitons may permit singlet exciton fission sensitization of conventional silicon solar cells.

11.
Acc Chem Res ; 46(6): 1300-11, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23611026

RESUMO

Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses long- and short-wavelength donors and an acceptor and a simpler, two-layer combination of a singlet-fission donor and a long-wavelength acceptor. An example of the trilayer structure is singlet fission in tetracene with copper phthalocyanine inserted at the C60 interface. The bilayer approach includes pentacene photovoltaic cells with an acceptor of infrared-absorbing lead sulfide or lead selenide nanocrystals. Lead selenide nanocrystals appear to be the most promising acceptors, exhibiting efficient triplet exciton dissociation and high power conversion efficiency. Finally, we review architectures that use singlet fission materials to sensitize other absorbers, thereby effectively converting conventional donor materials to singlet fission dyes. In these devices, photoexcitation occurs in a particular molecule and then energy is transferred to a singlet fission dye where the fission occurs. For example, rubrene inserted between a donor and an acceptor decouples the ability to perform singlet fission from other major photovoltaic properties such as light absorption.

12.
Nano Lett ; 11(4): 1495-8, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21355536

RESUMO

Singlet exciton fission is an efficient multiexciton generation process in organic molecules. But two concerns must be satisfied before it can be exploited in low-cost solution-processed organic solar cells. Fission must be combined with longer wavelength absorption in a structure that can potentially surpass the single junction limit, and its efficiency must be demonstrated in nanoscale domains within blended devices. Here, we report organic solar cells comprised of tetracene, copper phthalocyanine, and the buckyball C(60). Short wavelength light generates singlet excitons in tetracene. These are subsequently split into two triplet excitons and transported through the phthalocyanine. In addition, the phthalocyanine absorbs photons below the singlet exciton energy of tetracene. To test tetracene in nanostructured blends, we fabricate coevaporated bulk heterojunctions and multilayer heterojunctions of tetracene and C(60). We measure a singlet fission efficiency of (71 ± 18)%, demonstrating that exciton fission can efficiently compete with exciton dissociation on the nanoscale.


Assuntos
Fontes de Energia Elétrica , Compostos Orgânicos/química , Energia Solar , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
13.
Adv Mater ; 34(4): e2103870, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34793612

RESUMO

Volumetric optical imaging of magnetic fields is challenging with existing magneto-optical materials, motivating the search for dyes with strong magnetic field interactions, distinct emission spectra, and an ability to withstand high photon flux and incorporation within samples. Here, the magnetic field effect on singlet-exciton fission is exploited to demonstrate spatial imaging of magnetic fields in a thin film of rubrene. Doping rubrene with the high-quantum yield dye dibenzotetraphenylperiflanthene (DBP) is shown to enable optically pumped, slab waveguide lasing. This laser is magnetic-field-switchable: when operated just below the lasing threshold, application of a 0.4 T magnetic field switches the device between nonlasing and lasing modes, accompanied by an intensity modulation of +360%. This is thought to be the first demonstration of a magnetically switchable laser, as well as the largest magnetically induced change in emission brightness in a singlet-fission material to date. These results demonstrate that singlet-fission materials are promising materials for magnetic sensing applications and could inspire a new class of magneto-optical modulators.

14.
Adv Mater ; 33(27): e2100854, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34048075

RESUMO

Photon upconversion via triplet-triplet annihilation (TTA) has promise for overcoming the Shockley-Queisser limit for single-junction solar cells by allowing the utilization of sub-bandgap photons. Recently, bulk perovskites have been employed as sensitizers in solid-state upconversion devices to circumvent poor exciton diffusion in previous nanocrystal (NC)-sensitized devices. However, an in-depth understanding of the underlying photophysics of perovskite-sensitized triplet generation is still lacking due to the difficulty of precisely controlling interfacial properties of fully solution-processed devices. In this study, interfacial properties of upconversion devices are adjusted by a mild surface solvent treatment, specifically altering perovskite surface properties without perturbing the bulk perovskite. Thermal evaporation of the annihilator precludes further solvent contamination. Counterintuitively, devices with more interfacial traps show brighter upconversion. Approximately an order of magnitude difference in upconversion brightness is observed across different interfacial solvent treatments. Sequential charge transfer and interfacial trap-assisted triplet sensitization are demonstrated by comparing upconversion performance, transient photoluminescence dynamics, and magnetic field dependence of the devices. Incomplete triplet conversion from transferred charges and consequent triplet-charge annihilation (TCA) are also observed. The observations highlight the importance of interfacial control and provide guidance for further design and optimization of upconversion devices using perovskites or other semiconductors as sensitizers.

15.
ACS Cent Sci ; 7(1): 104-109, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33532573

RESUMO

Two-dimensional (2D) π-conjugated metal-organic frameworks (πMOFs) are a new class of designer electronic materials that are porous and tunable through the constituent organic molecules and choice of metal ions. Unlike typical MOFs, 2D πMOFs exhibit high conductivity mediated by delocalized π-electrons and have promising applications in a range of electrical devices as well as exotic physical properties. Here, we develop a growth method that generates single-crystal plates with lateral dimensions exceeding 10 µm, orders of magnitude bigger than previous methods. Synthesis of large single crystals eliminates a significant impediment to the fundamental characterization of the materials, allowing determination of the intrinsic conductivity and mobility along the 2D plane of πMOFs. A representative 2D πMOF, Ni-CAT-1, exhibits a conductivity of up to 2 S/cm, and Hall measurement reveals the origin of the high conductivity. Characterization of crystalline 2D πMOFs creates the foundation for developing electronic applications of this promising and highly diverse class of materials.

16.
J Am Chem Soc ; 132(34): 11878-80, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20690623

RESUMO

We examine the significance of hot exciton dissociation in two archetypical polymer-fullerene blend solar cells. Rather than evolving through a bound charge transfer state, hot processes are proposed to convert excitons directly into free charges. But we find that the internal quantum yields of carrier photogeneration are similar for both excitons and direct excitation of charge transfer states. The internal quantum yield, together with the temperature dependence of the current-voltage characteristics, is consistent with negligible impact from hot exciton dissociation.


Assuntos
Fontes de Energia Elétrica , Fulerenos/química , Polímeros/química , Modelos Moleculares , Teoria Quântica , Temperatura
17.
Adv Mater ; 32(26): e1908175, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32430955

RESUMO

Photon upconversion via triplet-triplet annihilation (TTA) has achieved high efficiencies in solution and within polymer matrices that support molecular migration systems. It has diverse potential applications including bioimaging, optical sensors, and photovoltaics. To date, however, the reported performance of TTA in rigid solid-state systems is substantially inferior, which may complicate the integration of TTA in other solid-state devices. Here, solid-state loss mechanisms in a green-to-blue upconversion system are investigated, and three specific losses are identified: energy back transfer, sensitizer aggregation, and triplet-charge annihilation. Strategies are demonstrated to mitigate energy back transfer and sensitizer aggregation, and a completely dry-processed solid-state TTA upconversion system having an upconversion efficiency of ≈2.5% (by the convention of maximum efficiency being 100%) at a relatively low excitation intensity of 238 mW cm-2 is reported. This device is the first demonstration of dry-processed solid-state TTA comparable to solution-processed solid-state systems. The strategies reported here can be generalized to other upconversion systems and offer a route to achieving higher-performance solid-state TTA upconversion devices that are compatible with applications sensitive to solvent damage.

18.
Nat Rev Chem ; 4(9): 490-504, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127960

RESUMO

The power of chemistry to prepare new molecules and materials has driven the quest for new approaches to solve problems having global societal impact, such as in renewable energy, healthcare and information science. In the latter case, the intrinsic quantum nature of the electronic, nuclear and spin degrees of freedom in molecules offers intriguing new possibilities to advance the emerging field of quantum information science. In this Perspective, which resulted from discussions by the co-authors at a US Department of Energy workshop held in November 2018, we discuss how chemical systems and reactions can impact quantum computing, communication and sensing. Hierarchical molecular design and synthesis, from small molecules to supramolecular assemblies, combined with new spectroscopic probes of quantum coherence and theoretical modelling of complex systems, offer a broad range of possibilities to realize practical quantum information science applications.

19.
Opt Express ; 17(1): 329-36, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19129901

RESUMO

Integrated surface plasmon resonance biosensors promise to enable compact and portable biosensing at high sensitivities. To replace the far field detector traditionally used to detect surface plasmons we integrate a near field detector below a functionalized gold film. The evanescent field of a surface plasmon at the aqueous-gold interface is converted into photocurrent by a thin film organic heterojunction diode. We demonstrate that use of the near field detector is equivalent to the traditional far field measurement of reflectivity. The sensor is stable and reversible in an aqueous environment for periods of 6 hrs. For specific binding of neutravidin, the detection limit is 4 microg/cm(2). The sensitivity can be improved by reducing surface roughness of the gold layers and optimization of the device design. From simulations, we predict a maximum sensitivity that is two times lower than a comparable conventional SPR biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Ouro , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/instrumentação , Estabilidade de Medicamentos , Desenho de Equipamento/instrumentação , Luz , Microeletrodos , Compostos Orgânicos , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/instrumentação , Água
20.
J Phys Chem Lett ; 10(11): 3147-3152, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31120756

RESUMO

High internal quantum efficiency semiconductor nanocrystal (NC)-based photon upconversion devices are currently based on a single monolayer of active NCs. Devices are therefore limited in their external quantum efficiency based on the low number of photons absorbed. Increasing the number of photons absorbed is expected to increase the upconversion efficiency, yet experimentally increasing the number of layers does not appreciably increase the upconverted light output. We unravel this mystery by combining kinetic modeling and transient photoluminescence spectroscopy. The inherent energetic disorder stemming from the polydispersity of the NCs means that the kinetics are governed by a stochastic transfer matrix. By drawing the rates from a probabilistic distribution and constructing a reaction network with realistic connectivity, we are able to fit complex photoluminescence traces with a very simple model. We use this model to explain the thickness-dependent performance of the upconversion devices and can attribute the reduced efficiencies to the low excitonic diffusivity of the exciton within the NC layers and increased back transfer of the created singlets from the organic annihilator rubrene. We suggest some avenues for overcoming these limitations in future devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa