Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 7886-7894, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38842368

RESUMO

2D magnetic materials have attracted growing interest driven by their unique properties and potential applications. However, the scarcity of systems exhibiting magnetism at room temperature has limited their practical implementation into functional devices. Here we focus on the van der Waals ferromagnet Fe3GaTe2, which exhibits above-room-temperature magnetism (Tc = 350-380 K) and strong perpendicular anisotropy. Through first-principles calculations, we examine the magnetic properties of Fe3GaTe2 and compare them with those of Fe3GeTe2. Our calculations unveil the microscopic mechanisms governing their magnetic behavior, emphasizing the pivotal role of ferromagnetic in-plane couplings in the stabilization of the elevated Tc in Fe3GaTe2. Additionally, we predict the stability, substantial perpendicular anisotropy, and high Tc of the single-layer Fe3GaTe2. We also demonstrate the potential of strain engineering and electrostatic doping to modulate its magnetic properties. Our results incentivize the isolation of the monolayer and pave the way for the future optimization of Fe3GaTe2 in magnetic and spintronic nanodevices.

2.
Chemistry ; : e202401092, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856100

RESUMO

Air pollution and greenhouse emissions are significant problems across various sectors, urging the need for advanced technologies to detect and capture harmful gases. In recent years, two-dimensional (2D) materials have attracted increasing attention due to their large surface-to-volume ratio and reactivity. Herein, we investigate the potential of single-layer CrSBr for gas sensing and capturing by means of first-principles calculations. We explore the adsorption behaviour of different pollutant gases (H2S, NH3, NO, NO2, CO and CO2) on this 2D ferromagnet and the impact of intrinsic defects on its magnetic properties. Interestingly, we find that Br vacancies enhance the adsorption of NH3, NO and NO2 and induce a selective frequency shift on the magnon dispersion. This work motivates the creation of novel magnonic gas sensing devices based on 2D van der Waals magnetic materials.

3.
J Am Chem Soc ; 145(23): 12487-12498, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261429

RESUMO

High-quality devices based on layered heterostructures are typically built from materials obtained by complex solid-state physical approaches or laborious mechanical exfoliation and transfer. Meanwhile, wet-chemically synthesized materials commonly suffer from surface residuals and intrinsic defects. Here, we synthesize using an unprecedented colloidal photocatalyzed, one-pot redox reaction a few-layers bismuth hybrid of "electronic grade" structural quality. Intriguingly, the material presents a sulfur-alkyl-functionalized reconstructed surface that prevents it from oxidation and leads to a tuned electronic structure that results from the altered arrangement of the surface. The metallic behavior of the hybrid is supported by ab initio predictions and room temperature transport measurements of individual nanoflakes. Our findings indicate how surface reconstructions in two-dimensional (2D) systems can promote unexpected properties that can pave the way to new functionalities and devices. Moreover, this scalable synthetic process opens new avenues for applications in plasmonics or electronic (and spintronic) device fabrication. Beyond electronics, this 2D hybrid material may be of interest in organic catalysis, biomedicine, or energy storage and conversion.

4.
Nano Lett ; 22(21): 8771-8778, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36162813

RESUMO

The recent isolation of two-dimensional (2D) magnets offers tantalizing opportunities for spintronics and magnonics at the limit of miniaturization. One of the key advantages of atomically thin materials is their outstanding deformation capacity, which provides an exciting avenue to control their properties by strain engineering. Herein, we investigate the magnetic properties, magnon dispersion, and spin dynamics of the air-stable 2D magnetic semiconductor CrSBr (TC = 146 K) under mechanical strain using first-principles calculations. Our results provide a deep microscopic analysis of the competing interactions that stabilize the long-range ferromagnetic order in the monolayer. We showcase that the magnon dynamics of CrSBr can be modified selectively along the two main crystallographic directions as a function of applied strain, probing the potential of this quasi-1D electronic system for magnon straintronics applications. Moreover, we predict a strain-driven enhancement of TC by ∼30%, allowing the propagation of spin waves at higher temperatures.

5.
Inorg Chem ; 60(18): 14096-14104, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34415149

RESUMO

Vibrations play a prominent role in magnetic relaxation processes of molecular spin qubits as they couple to spin states, leading to the loss of quantum information. Direct experimental determination of vibronic coupling is crucial to understand and control the spin dynamics of these nano-objects, which represent the limit of miniaturization for quantum devices. Herein, we measure the magneto-infrared properties of the molecular spin qubit system Na9[Ho(W5O18)2]·35H2O. Our results place significant constraints on the pattern of crystal field levels and the vibrational excitations allowing us to unravel vibronic decoherence pathways in this system. We observe field-induced spectral changes near 63 and 370 cm-1 that are modeled in terms of odd-symmetry vibrations mixed with f-manifold crystal field excitations. The overall extent of vibronic coupling in Na9[Ho(W5O18)2]·35H2O is limited by a modest coupling constant (on the order of 0.25) and a transparency window in the phonon density of states that acts to keep the intramolecular vibrations and MJ levels apart. These findings advance the understanding of vibronic coupling in a molecular magnet with atomic clock transitions and suggest strategies for designing molecular spin qubits with improved coherence lifetimes.

6.
Chemistry ; 25(54): 12636-12643, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31350922

RESUMO

Tetrathiafulvalene-lanthanide (TTF-Ln) metal-organic frameworks (MOFs) are an interesting class of multifunctional materials in which porosity can be combined with electronic properties such as electrical conductivity, redox activity, luminescence and magnetism. Herein a new family of isostructural TTF-Ln MOFs is reported, denoted as MUV-5(Ln) (Ln=Gd, Tb, Dy, Ho, Er), exhibiting semiconducting properties as a consequence of the short intermolecular S⋅⋅⋅S contacts established along the chain direction between partially oxidised TTF moieties. In addition, this family shows photoluminescence properties and single-molecule magnetic behaviour, finding near-infrared (NIR) photoluminescence in the Yb/Er derivative and slow relaxation of the magnetisation in the Dy and Er derivatives. As such properties are dependent on the electronic structure of the lanthanide ion, the immense structural, electronic and functional versatility of this class of materials is emphasised.

7.
Chemistry ; 25(7): 1758-1766, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403293

RESUMO

Early actinide ions have large spin-orbit couplings and crystal field interactions, leading to large anisotropies. The success in using actinides as single-molecule magnets has so far been modest, underlining the need for rational strategies. Indeed, the electronic structure of actinide single-molecule magnets and its relation to their magnetic properties remains largely unexplored. A uranium(III) single-molecule magnet, [UIII {SiMe2 NPh}3 -tacn)(OPPh3 )] (tacn=1,4,7-triazacyclononane), has been investigated by means of a combination of magnetic, spectroscopic and theoretical methods to elucidate the origin of its static and dynamic magnetic properties.

8.
Inorg Chem ; 58(18): 11883-11892, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31490061

RESUMO

Molecular nanomagnets based on mononuclear metal complexes, also known as single-ion magnets (SIMs), are crossing challenging boundaries in molecular magnetism. From an experimental point of view, this class of magnetic molecules has expanded from lanthanoid complexes to both d-transition metal and actinoid complexes. From a theoretical point of view, more and more improved models have been developed, and we are now able not only to calculate the electronic structure of these systems on the basis of their molecular structures but also to unveil the role of vibrations in the magnetic relaxation processes, at least for lanthanoid and d-transition metal SIMs. This knowledge has allowed us to optimize the behavior of dysprosocenium-based SIMs until reaching magnetic hysteresis above liquid-nitrogen temperature. In this contribution, we offer a brief perspective of the progress of theoretical modeling in this field. We start by reviewing the developed methodologies to investigate the electronic structures of these systems and then move on focus to the open problem of understanding and optimizing the vibrationally induced spin relaxation, especially in uranium-based molecular nanomagnets. Finally, we discuss the differences in the design strategies for 4f and 5f SIMs, including an analysis of the metallocenium family.

9.
Inorg Chem ; 57(22): 14170-14177, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30378423

RESUMO

We report the design, preparation, and characterization of two families of thermally robust coordination complexes based on lanthanoid quinolinate compounds: [Ln(5,7-Br2q)4]- and [Ln(5,7-ClIq)4]-, where q = 8-hydroquinolinate anion and Ln = DyIII, TbIII, ErIII, and HoIII. The sodium salt of [Dy(5,7-Br2q)4]- decomposes upon sublimation, whereas the sodium salt of [Dy(5,7-ClIq)4]-, which displays subtly different crystalline interactions, is sublimable under gentle conditions. The resulting film presents low roughness with high coverage, and the molecular integrity of the coordination complex is verified through AFM, MALDI-TOF, FT-IR, and microanalysis. Crucially, the single-molecule magnet behavior exhibited by [Dy(5,7-ClIq)4]- in bulk remains detectable by ac magnetometry in the sublimated film.

10.
Inorg Chem ; 56(8): 4729-4739, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28375619

RESUMO

We report the syntheses and the magnetic characterization of a new series of lanthanide complexes, in which the Ce, Nd, Gd, Dy, Er, and Yb derivatives show single-molecule magnet behavior. These complexes, named Ln(trenovan), where H3trenovan is tris(((3-methoxysalicylidene)amino)ethyl)amine, exhibit trigonal symmetry and the Ln(III) ion is heptacoordinated. Their molecular structure is then very similar to that of the previously reported Ln(trensal) series, where H3trensal is 2,2',2″-tris(salicylideneimino)triethylamine. This prompted us to use the spectroscopic and magnetic properties of the Ln(trensal) family (Ln = Nd, Tb, Dy, Ho, Er, and Tm) to obtain a set of crystal-field parameters to be used as starting point to determine the electronic structures and magnetic anisotropy of the analogous Ln(trenovan) complexes using the CONDON computational package. The obtained results were then used to discuss the electron paramagnetic resonance (EPR) and ac susceptibility results. As a whole, the obtained results indicate for this type of complexes single-molecule magnet behavior is not related to the presence of an anisotropy barrier, due to a charge distribution of the ligand around the lanthanoid, which results in highly mixed ground states in terms of MJ composition of the states. The crucial parameter in determining the slow relaxation of the magnetization is then rather the number of unpaired electrons (only Kramers ions showing in-field slow relaxation) than the shape of the charge distribution for different Ln(III).

11.
Inorg Chem ; 56(9): 4911-4917, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28414438

RESUMO

Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

12.
J Comput Chem ; 37(13): 1238-44, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26833799

RESUMO

SIMPRE is a fortran77 code which uses an effective electrostatic model of point charges to predict the magnetic behavior of rare-earth-based mononuclear complexes. In this article, we present SIMPRE1.2, which now takes into account two further phenomena. First, SIMPRE now considers the hyperfine and quadrupolar interactions within the rare-earth ion, resulting in a more complete and realistic set of energy levels and wave functions. Second, and to widen SIMPRE's predictive capabilities regarding potential molecular spin qubits, it now includes a routine that calculates an upper-bound estimate of the decoherence time considering only the dipolar coupling between the electron spin and the surrounding nuclear spin bath. Additionally, SIMPRE now allows the user to introduce the crystal field parameters manually. Thus, we are able to demonstrate the new features using as examples (i) a Gd-based mononuclear complex known for its properties both as a single ion magnet and as a coherent qubit and (ii) an Er-based mononuclear complex. © 2016 Wiley Periodicals, Inc.

13.
Chemistry ; 22(38): 13532-9, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27465352

RESUMO

We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised.

14.
Inorg Chem ; 55(11): 5398-404, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27186802

RESUMO

The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increasing the relaxation time by over 3 orders of magnitude at 3.5 K.

15.
Chemistry ; 21(49): 17817-26, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26536849

RESUMO

A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe2 NPh)3 -tacn}U(IV) (η(2) -N2 Ph2 (.) )] (2), was obtained by one-electron reduction of azobenzene by the trivalent uranium compound [U(III) {(SiMe2 NPh)3 -tacn}] (1). Compound 2 was characterized by single-crystal X-ray diffraction and (1) H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single-molecule magnet behaviour for the first time in a mononuclear U(IV) compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single-ion Hamiltonian.

16.
Inorg Chem ; 54(4): 1949-57, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25651301

RESUMO

The magnetic properties of layered dysprosium hydroxides, both diluted in the diamagnetic yttrium analogous matrix (LYH:0.04Dy), and intercalated with 2,6-naphthalene dicarboxylate anions (LDyH-2,6-NDC), were studied and compared with the recently reported undiluted compound (LDyH = Dy8(OH)20Cl4·6H2O). The Y diluted compound reveals a single-molecule magnet (SMM) behavior of single Dy ions, with two distinct slow relaxation processes of the magnetization at low temperatures associated with the two main types of Dy sites, 8- and 9-fold coordinated. Only one relaxation process is observed in both undiluted LDyH and intercalated compounds as a consequence of dominant ferromagnetic Dy-Dy interactions, both intra- and interlayer. Semiempirical calculations using a radial effect charge (REC) model for the crystal field splitting of the Dy levels are used to explain data in terms of contributions from the different Dy sites. The dominant ferromagnetic interactions are explained in terms of orientations of easy magnetization axes obtained by REC calculations together with the sign of the superexchange expected from the Dy-O-Dy angles.

17.
J Comput Chem ; 35(26): 1930-4, 2014 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-25087575

RESUMO

The crystal field approach used by SIMPRE is analyzed, verifying the exactness of the results concerning energy levels and magnetic properties calculated by the package. To coincide with the prevailing conventions, we reformulate the presentation of the crystal field parameters, so that the results are now, also from a formal point of view, strictly correct. New calculations are presented to test the influence of neglecting the excited J states, a common but critical approximation employed by SIMPRE. For that, we examine the case of Er(trensal) complex (H3 trensal = 2,2',2″-tris(salicylideneimino)triethylamine) where the influence of this approximation is found to be minimal. A patched version of the code, SIMPRE 1.1, and an updated version of the user manual are now available. Finally, we comment on "Software package SIMPRE - revisited," which apparently revisits a software package without inspecting or using the code.

18.
Chemistry ; 20(34): 10695-702, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24804629

RESUMO

The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM-MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non-innocent anions.

19.
Inorg Chem ; 53(20): 11323-7, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25271391

RESUMO

Simple electrostatic models have been shown to successfully rationalize the magnetic properties of mononuclear single molecule magnets based on f-elements and even to predict the direction of the magnetic anisotropy axis in these nanomagnets. In this Article, we go a step forward by showing that these models, conveniently modified to account for the covalency effects, are able to predict not only the easy axis direction but also the three components of the magnetic anisotropy. Thus, by using a lone pair effective charge (LPEC) model we can fully reproduce the angular dependence of the magnetic susceptibility in single crystals of pentamethylcyclopentadienyl-Er-cyclooctatetraene single-ion magnet. Furthermore, the parametrization of the ligands obtained in this study has been extrapolated to successfully reproduce spectroscopic data of a set of mononuclear lanthanoid complexes based on the same kind of ligands, thus emphasizing the predictive character of this model.

20.
Inorg Chem ; 53(18): 9976-80, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25156530

RESUMO

This paper belongs to a series of contributions aiming at establishing a general library that helps in the description of the crystal field (CF) effect of any ligand on the splitting of the J ground states of mononuclear f-element complexes. Here, the effective parameters associated with the oxo ligands (effective charges and metal-ligand distances) are extracted from the study of the magnetic properties of the first two families of single-ion magnets based on lanthanoid polyoxometalates (POMs), formulated as [Ln(W5O18)2](9-) and [Ln(ß2-SiW11O39)2](13-) (Ln = Tb, Dy, Ho, Er, Tm, Yb). This effective CF approach provides a good description of the lowest-lying magnetic levels and the associated wave functions of the studied systems, which is fully consistent with the observed magnetic behavior. In order to demonstrate the predictive character of this model, we have extended our model in a first step to calculate the properties of the POM complexes of the early 4f-block metals. In doing so, [Nd(W5O18)2](9-) has been identified as a suitable candidate to exhibit SMM behavior. Magnetic experiments have confirmed such a prediction, demonstrating the usefulness of this strategy for the directed synthesis of new nanomagnets. Thus, with an effective barrier of 51.4 cm(-1) under an applied dc field of 1000 Oe, this is the second example of a Nd(3+)-based single-ion magnet.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa