Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biochemistry ; 55(39): 5554-5565, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27571563

RESUMO

CTP synthetases catalyze the last step of pyrimidine biosynthesis and provide the sole de novo source of cytosine-containing nucleotides. As a central regulatory hub, they are regulated by ribonucleotide and enzyme concentration through ATP and UTP substrate availability, CTP product inhibition, GTP allosteric modification, and quaternary structural changes including the formation of CTP-inhibited linear polymers (filaments). Here, we demonstrate that nicotinamide redox cofactors are moderate inhibitors of Escherichia coli CTP synthetase (EcCTPS). NADH and NADPH are the most potent, and the primary inhibitory determinant is the reduced nicotinamide ring. Although nicotinamide inhibition is noncompetitive with substrates, it apparently enhances CTP product feedback inhibition and GTP allosteric regulation. Further, CTP and GTP also enhance each other's effects, consistent with the idea that NADH, CTP, and GTP interact with a common intermediate enzyme state. A filament-blocking mutation that reduces CTP inhibitory effects also reduced inhibition by GTP but not NADH. Protein-concentration effects on GTP inhibition suggest that, like CTP, GTP preferentially binds to the filament. All three compounds display nearly linear dose-dependent inhibition, indicating a complex pattern of cooperative interactions between binding sites. The apparent synergy between inhibitors, in consideration with physiological nucleotide concentrations, points to metabolically relevant inhibition by nicotinamides, and implicates cellular redox state as a regulator of pyrimidine biosynthesis.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/metabolismo , Escherichia coli/enzimologia , Guanosina Trifosfato/metabolismo , NAD/metabolismo , Cinética
2.
Nucleic Acids Res ; 41(7): 4118-28, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408851

RESUMO

Transcription activator-like effectors (TALEs) have revolutionized the field of genome engineering. We present here a systematic assessment of TALE DNA recognition, using quantitative electrophoretic mobility shift assays and reporter gene activation assays. Within TALE proteins, tandem 34-amino acid repeats recognize one base pair each and direct sequence-specific DNA binding through repeat variable di-residues (RVDs). We found that RVD choice can affect affinity by four orders of magnitude, with the relative RVD contribution in the order NG > HD ≈ NN >> NI > NK. The NN repeat preferred the base G over A, whereas the NK repeat bound G with 10(3)-fold lower affinity. We compared AvrBs3, a naturally occurring TALE that recognizes its target using some atypical RVD-base combinations, with a designed TALE that precisely matches 'standard' RVDs with the target bases. This comparison revealed unexpected differences in sensitivity to substitutions of the invariant 5'-T. Another surprising observation was that base mismatches at the 5' end of the target site had more disruptive effects on affinity than those at the 3' end, particularly in designed TALEs. These results provide evidence that TALE-DNA recognition exhibits a hitherto un-described polarity effect, in which the N-terminal repeats contribute more to affinity than C-terminal ones.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/química , Transativadores/química , Transativadores/metabolismo , DNA/metabolismo , Ligação Proteica , Sequências Repetitivas de Aminoácidos , Ativação Transcricional
3.
J Bacteriol ; 194(15): 3913-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609918

RESUMO

The stressosome is a 1.8-MDa cytoplasmic complex that conveys environmental signals to the σ(B) stress factor of Bacillus subtilis. A functionally irreducible complex contains multiple copies of three proteins: the RsbRA coantagonist, RsbS antagonist, and RsbT serine-threonine kinase. Homologues of these proteins are coencoded in different genome contexts in diverse bacteria, forming a versatile sensing and transmission module called RST after its common constituents. However, the signaling pathway within the stressosome itself is not well defined. The N-terminal, nonheme globin domains of RsbRA project from the stressosome and are presumed to channel sensory input to the C-terminal STAS domains that form the complex core. A conserved, 13-residue α-helical linker connects these domains. We probed the in vivo role of the linker using alanine scanning mutagenesis, assaying stressosome output in B. subtilis via a σ(B)-dependent reporter fusion. Substitutions at four conserved residues increased output 4- to 30-fold in unstressed cells, whereas substitutions at four nonconserved residues significantly decreased output. The periodicity of these effects supports a model in which RsbRA functions as a dimer in vivo, with the linkers forming parallel paired helices via a conserved interface. The periodicity further suggests that the opposite, nonconserved faces make additional contacts important for efficient stressosome operation. These results establish that the linker influences stressosome output under steady-state conditions. However, the stress response phenotypes of representative linker substitutions provide less support for the notion that the N-terminal globin domain senses acute environmental challenge and transmits this information via the linker helix.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Estresse Fisiológico , Sequência de Aminoácidos , Substituição de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfoproteínas/genética , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Fator sigma/metabolismo
4.
J Bacteriol ; 193(14): 3588-97, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602359

RESUMO

The stressosome is a multiprotein, 1.8-MDa icosahedral complex that transmits diverse environmental signals to activate the general stress response of Bacillus subtilis. The way in which it senses these cues and the pathway of signal propagation within the stressosome itself are poorly understood. The stressosome core consists of four members of the RsbR coantagonist family together with the RsbS antagonist; its cryo-electron microscopy (cryoEM) image suggests that the N-terminal domains of the RsbR proteins form homodimers positioned to act as sensors on the stressosome surface. Here we probe the role of the N-terminal domain of the prototype coantagonist RsbRA by making structure-based amino acid substitutions in potential interaction surfaces. To unmask the phenotypes caused by single-copy rsbRA mutations, we constructed strains lacking the other three members of the RsbR coantagonist family and assayed system output using a reporter fusion. Effects of five individual alanine substitutions in the prominent dimer groove did not match predictions from an earlier in vitro assay, indicating that the in vivo assay was necessary to assess their influence on signaling. Additional substitutions expected to negatively affect domain dimerization had substantial impact, whereas those that sampled other prominent surface features had no consequence. Notably, even mutations resulting in significantly altered phenotypes raised the basal level of system output only in unstressed cells and had little effect on the magnitude of subsequent stress signaling. Our results provide evidence that the N-terminal domain of the RsbRA coantagonist affects stressosome function but offer no direct support for the hypothesis that it is a signal sensor.


Assuntos
Substituição de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Complexos Multiproteicos/genética , Fosforilação , Estrutura Terciária de Proteína
5.
Nat Struct Mol Biol ; 24(6): 507-514, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459447

RESUMO

The universally conserved enzyme CTP synthase (CTPS) forms filaments in bacteria and eukaryotes. In bacteria, polymerization inhibits CTPS activity and is required for nucleotide homeostasis. Here we show that for human CTPS, polymerization increases catalytic activity. The cryo-EM structures of bacterial and human CTPS filaments differ considerably in overall architecture and in the conformation of the CTPS protomer, explaining the divergent consequences of polymerization on activity. The structure of human CTPS filament, the first structure of the full-length human enzyme, reveals a novel active conformation. The filament structures elucidate allosteric mechanisms of assembly and regulation that rely on a conserved conformational equilibrium. The findings may provide a mechanism for increasing human CTPS activity in response to metabolic state and challenge the assumption that metabolic filaments are generally storage forms of inactive enzymes. Allosteric regulation of CTPS polymerization by ligands likely represents a fundamental mechanism underlying assembly of other metabolic filaments.


Assuntos
Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Multimerização Proteica , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
6.
J Mol Biol ; 354(2): 233-45, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16242714

RESUMO

During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5' (S1 nucleotide) or 3' (S1' nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1' substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the "conformational switch" isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289 may be to selectively stabilize the "activated" phosphate conformation in order to promote cleavage.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/metabolismo , Integrases/metabolismo , Conformação de Ácido Nucleico , Recombinação Genética/genética , Proteínas Virais/metabolismo , Alanina/química , Alanina/genética , Substituição de Aminoácidos , Sítios de Ligação , DNA Bacteriano/genética , Histidina/química , Histidina/genética , Ligação de Hidrogênio , Cinética , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
7.
J Mol Biol ; 319(1): 107-27, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-12051940

RESUMO

Cre recombinase uses two pairs of sequential cleavage and religation reactions to exchange homologous DNA strands between 34 base-pair (bp) LoxP recognition sequences. In the oligomeric recombination complex, a switch between "cleaving" and "non-cleaving" subunit conformations regulates the number, order, and regio-specificity of the strand exchanges. However, the particular sequence of events has been in question. From analysis of strand composition of the Holliday junction (HJ) intermediate, we determined that Cre initiates recombination of LoxP by cleaving the upper strand on the left arm. Cre preferred to react with the left arm of a LoxP suicide substrate, but at a similar rate to the right arm, indicating that the first strand to be exchanged is selected prior to cleavage. We propose that during complex assembly the cleaving subunit preferentially associates with the LoxP left arm, directing the first strand exchange to that side. In addition, this biased assembly would enforce productive orientation of LoxP sites in the recombination synapses. A novel Cre-HJ complex structure in which LoxP was oriented with the left arm bound by the cleaving Cre subunit suggested a physical basis for the strand exchange order. Lys86 and Lys201 interact with the left arm scissile adenine base differently than in structures that have a scissile guanine. These interactions are associated with positioning the 198-208 loop, a structural component of the conformational switch, in a configuration that is specific to the cleaving conformation. Our results suggest that strand exchange order and site alignment are regulated by an "induced fit" mechanism in which the cleaving conformation is selectively stabilized through protein-DNA interactions with the scissile base on the strand that is cleaved first.


Assuntos
Sítios de Ligação Microbiológicos/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/genética , Integrases/metabolismo , Conformação de Ácido Nucleico , Recombinação Genética/genética , Proteínas Virais/metabolismo , Pareamento de Bases , Sequência de Bases , Cristalografia por Raios X , DNA Bacteriano/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Fatores de Tempo
8.
Chem Biol ; 10(11): 1085-94, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14652076

RESUMO

The basis for the altered DNA specificities of two Cre recombinase variants, obtained by mutation and selection, was revealed by their cocrystal structures. The proteins share similar substitutions but differ in their preferences for the natural LoxP substrate and an engineered substrate that is inactive with wild-type Cre, LoxM7. One variant preferentially recombines LoxM7 and contacts the substituted bases through a hydrated network of novel interlocking protein-DNA contacts. The other variant recognizes both LoxP and LoxM7 utilizing the same DNA backbone contact but different base contacts, facilitated by an unexpected DNA shift. Assisted by water, novel interaction networks can arise from few protein substitutions, suggesting how new DNA binding specificities might evolve. The contributions of macromolecular plasticity and water networks in specific DNA recognition observed here present a challenge for predictive schemes.


Assuntos
Integrases/metabolismo , Proteínas Virais/metabolismo , Água/química , Integrases/química , Modelos Moleculares , Proteínas Virais/química
9.
Chem Biol Interact ; 141(1-2): 3-24, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12213382

RESUMO

The Ah receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse synthetic and naturally-occurring chemicals. Although a significant amount of information is available with respect to the planar aromatic hydrocarbon AhR ligands, the actual spectrum of chemicals that can bind to and activate the AhR is only now being elucidated. In addition, the lack of information regarding the actual three-dimensional structure of the AhR ligand binding domain (LBD) has hindered detailed analysis of the molecular mechanisms by which these ligands bind to and active AhR signal transduction. In this review we describe the current state of knowledge with respect to naturally occurring AhR ligands and present and discuss the first theoretical model of the AhR LBD based on crystal structures of homologous PAS family members.


Assuntos
Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Transdução de Sinais
10.
Adv Protein Chem Struct Biol ; 94: 347-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24629191

RESUMO

Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism.


Assuntos
DNA/metabolismo , Conformação Molecular , Transativadores/metabolismo , DNA/química , Elasticidade , Simulação de Dinâmica Molecular , Distribuição de Poisson , Transativadores/química
11.
Nat Protoc ; 9(7): 1645-61, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24945382

RESUMO

Many physiological functions of helicases are dependent on their ability to unwind nucleic acid duplexes in an ATP-dependent fashion. Determining the kinetic frameworks of these processes is crucial to understanding how these proteins function. We recently developed a fluorescence assay to monitor RNA duplex unwinding by DEAD-box helicases in real time. In this assay, two fluorescently modified short reporter oligonucleotides are annealed to an unmodified RNA loading strand of any length so that the fluorescent moieties of the two reporters find themselves in close proximity to each other and fluorescence is quenched. One reporter is modified with cyanine 3 (Cy3), whereas the other is modified with a spectrally paired black-hole quencher (BHQ). As the helicase unwinds the loading strand, the enzyme displaces the Cy3-modified reporter, which will bind to a capture or competitor DNA strand, permanently separating it from the BHQ-modified reporter. Complete separation of the Cy3-modified reporter strand is thus detected as an increase in total fluorescence. This assay is compatible with reagentless biosensors to monitor ATPase activity so that the coupling between ATP hydrolysis and duplex unwinding can be determined. With the protocol described, obtaining data and analyzing results of unwinding and ATPase assays takes ∼4 h.


Assuntos
Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Microscopia de Fluorescência/métodos , RNA/química , Adenosina Trifosfatases/metabolismo , Conformação de Ácido Nucleico , Especificidade por Substrato
12.
Elife ; 3: e03638, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25030911

RESUMO

CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity, we show that polymerization inhibits activity, and CtpS's product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expressão Gênica , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
13.
J Mol Biol ; 378(3): 653-65, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18374357

RESUMO

The pseudo-fourfold homotetrameric synapse formed by Cre protein and target DNA restricts site-specific recombination to sequences containing dyad-symmetric Cre-binding repeats. Mixtures of engineered altered-specificity Cre monomers can form heterotetramers that recombine nonidentical asymmetric sequences, allowing greater flexibility for target site selection in the genome of interest. However, the variety of tetramers allowed by random subunit association increases the chances of unintended reactivity at nontarget sites. This problem can be circumvented by specifying a unique spatial arrangement of heterotetramer subunits. By reconfiguring intersubunit protein-protein contacts, we directed the assembly of two different Cre monomers, each having a distinct DNA sequence specificity, in an alternating (ABAB) configuration. This designed heterotetramer preferentially recombined a particular pair of asymmetric Lox sites over other pairs, whereas a mixture of freely associating subunits showed little bias. Alone, the engineered monomers had reduced reactivity towards both dyad-symmetric and asymmetric sites. Specificity arose because the organization of Cre-binding repeats of the preferred substrate matched the programmed arrangement of the subunits in the heterotetrameric synapse. When this "spatial matching" principle is applied, Cre-mediated recombination can be directed to asymmetric DNA sequences with greater fidelity.


Assuntos
Sítios de Ligação Microbiológicos , Integrases/química , Recombinação Genética , Sequência de Bases , Sítios de Ligação , DNA Nucleotidiltransferases , Integrases/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Especificidade por Substrato
14.
J Biol Chem ; 282(24): 17613-22, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17463002

RESUMO

Phosphorylation of human CTP synthetase 1 by mammalian protein kinase C was examined. Using purified Escherichia coli-expressed CTP synthetase 1 as a substrate, protein kinase C activity was time- and dose-dependent and dependent on the concentrations of ATP and CTP synthetase 1. The protein kinase C phosphorylation of the recombinant enzyme was accompanied by a 95-fold increase in CTP synthetase 1 activity. Phosphopeptide mapping and phosphoamino acid analyses showed that CTP synthetase 1 was phosphorylated on multiple serine and threonine residues. The induction of PKC1(R398A)-encoded protein kinase C resulted in a 50% increase for human CTP synthetase 1 phosphorylation in the Saccharomyces cerevisiae ura7Delta ura8Delta mutant lacking yeast CTP synthetase activity. Synthetic peptides that contain the protein kinase C motif for Ser(462) and Thr(455) were substrates for mammalian protein kinase C, and S462A and T455A mutations resulted in decreases in the extent of CTP synthetase 1 phosphorylation that occurred in vivo. Phosphopeptide mapping analysis of S. cerevisiae-expressed CTP synthetase 1 mutant enzymes phosphorylated with mammalian protein kinase C confirmed that Ser(462) and Thr(455) were phosphorylation sites. The S. cerevisiae-expressed and purified S462A mutant enzyme exhibited a 2-fold reduction in CTP synthetase 1 activity, whereas the purified T455A mutant enzyme exhibited a 2-fold elevation in CTP synthetase 1 activity (Choi, M.-G., and Carman, G.M. (2006) J. Biol. Chem. 282, 5367-5377). These data indicated that protein kinase C phosphorylation at Ser(462) stimulates human CTP synthetase 1 activity, whereas phosphorylation at Thr(455) inhibits activity.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Proteína Quinase C/metabolismo , Serina/metabolismo , Treonina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Fosforilação , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Biochemistry ; 45(40): 12216-26, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17014075

RESUMO

Cre recombinase residue Arg259 mediates a canonical bidentate hydrogen-bonded contact with Gua27 of its LoxP DNA substrate. Substituting Cyt8-Gua27 with the three other basepairs, to give LoxAT, LoxTA, and LoxGC, reduced Cre-mediated recombination in vitro, with the preference order of Gua27 > Ade27 approximately Thy27 >> Cyt27. While LoxAT and LoxTA exhibited 2.5-fold reduced affinity and 2.5-5-fold slower reaction rates, LoxGC was a barely functional substrate. Its maximum level of turnover was 6-fold reduced over other substrates, and it exhibited 8.5-fold reduced Cre binding and 6.3-fold slower turnover rate. With LoxP, the rate-limiting step for recombination occurs after protein-DNA complex assembly but before completion of the first strand exchange to form the Holliday junction (HJ) intermediate. With the mutant substrates, it occurs after HJ formation. Using an increased DNA-binding E262Q/E266Q "CreQQ" variant, all four substrates react more readily, but with much less difference between them, and maintained the earlier rate-limiting step. The data indicate that Cre discriminates substrates through differences in (i) concentration dependence of active complex assembly, (ii) turnover rate, and (iii) maximum yield of product at saturation, all of which are functions of the Cre-DNA binding interaction. CreQQ suppression of Lox mutant defects implies that coupling between binding and turnover involves a change in Cre subunit DNA affinities during the "conformational switch" that occurs prior to the second strand exchange. These results provide an example of how a DNA-binding enzyme can exert specificity via affinity modulation of conformational transitions that occur along its reaction pathway.


Assuntos
Integrases/metabolismo , Recombinação Genética/fisiologia , Sequência de Aminoácidos , Arginina/química , Sítios de Ligação Microbiológicos/fisiologia , Sequência de Bases , Ácido Glutâmico/química , Modelos Moleculares , Especificidade por Substrato
16.
Biochemistry ; 44(41): 13491-9, 2005 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-16216072

RESUMO

Cytidine triphosphate synthetases (CTPSs) synthesize CTP and regulate its intracellular concentration through direct interactions with the four ribonucleotide triphosphates. In particular, CTP product is a feedback inhibitor that competes with UTP substrate. Selected CTPS mutations that impart resistance to pyrimidine antimetabolite inhibitors also relieve CTP inhibition and cause a dramatic increase in intracellular CTP concentration, indicating that the drugs act by binding to the CTP inhibitory site. Resistance mutations map to a pocket that, although adjacent, does not coincide with the expected UTP binding site in apo Escherichia coli CTPS [EcCTPS; Endrizzi, J. A., et al. (2004) Biochemistry 43, 6447-6463], suggesting allosteric rather than competitive inhibition. Here, bound CTP and ADP were visualized in catalytically active EcCTPS crystals soaked in either ATP and UTP substrates or ADP and CTP products. The CTP cytosine ring resides in the pocket predicted by the resistance mutations, while the triphosphate moiety overlaps the putative UTP triphosphate binding site, explaining how CTP competes with UTP while CTP resistance mutations are acquired without loss of catalytic efficiency. Extensive complementarity and interaction networks at the interfacial binding sites provide the high specificity for pyrimidine triphosphates and mediate nucleotide-dependent tetramer formation. Overall, these results depict a novel product inhibition strategy in which shared substrate and product moieties bind to a single subsite while specificity is conferred by separate subsites. This arrangement allows for independent adaptation of UTP and CTP binding affinities while efficiently utilizing the enzyme surface.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/farmacologia , Retroalimentação Fisiológica , Sítios de Ligação , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Carbono-Nitrogênio Ligases/genética , Cristalização , Resistência a Medicamentos , Escherichia coli/enzimologia , Ligação de Hidrogênio , Estrutura Molecular , Especificidade por Substrato
17.
J Biol Chem ; 280(46): 38328-36, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16179339

RESUMO

CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Delta ura8Delta mutant lacking CTP synthetase activity. The expression of the CTPS1- and CTPS2-encoded human CTP synthetase enzymes in the ura7Delta ura8Delta mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from (32)P(i)-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase 1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation.


Assuntos
Carbono-Nitrogênio Ligases/biossíntese , Carbono-Nitrogênio Ligases/química , Saccharomyces cerevisiae/enzimologia , Catálise , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Teste de Complementação Genética , Humanos , Immunoblotting , Modelos Químicos , Mutação , Peptídeos/química , Fenótipo , Fosfoaminoácidos/química , Fosfolipídeos/química , Fosforilação , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Fatores de Tempo
18.
Biochem Biophys Res Commun ; 308(3): 529-34, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12914783

RESUMO

Cre recombinase exchanges DNA strands at the LoxP recognition site via transphosphorylation reactions that involve pentacoordinate transition states. We demonstrate that meta-vanadate ion (VO(3)(-)) and appropriate DNA substrates assemble a transition-state analog-like complex in the Cre active site. Meta-vanadate inhibits recombination of LoxP-derived oligonucleotide substrates that contain a gap at either or both scissile phosphates, but does not inhibit reactions with intact LoxP. The 3(')-hydroxyl group of the gapped substrate is required for inhibition, suggesting that vanadate is ligated by three oxo ligands. Assembly of the inhibited complex is slow (t(1/2)=19min at 4mM NaVO(3)) and requires Cre, substrates, and meta-vanadate. Holliday junction intermediates accumulated at lower meta-vanadate concentrations, suggesting that the second strand exchange is inhibited more readily than the first. The apparent K(D) for meta-vanadate is 1.5-2mM and binding shows positive cooperativity. This methodology may have general application for mechanistic studies of recombinase/topoisomerase-mediated strand exchange reactions.


Assuntos
Inibidores Enzimáticos/farmacologia , Recombinação Genética/efeitos dos fármacos , Vanadatos/farmacologia , Proteínas Virais/antagonistas & inibidores , Sequência de Bases , Sítios de Ligação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Integrases/metabolismo , Cinética , Modelos Químicos , Dados de Sequência Molecular , Vanadatos/química , Proteínas Virais/metabolismo
19.
Biochemistry ; 43(21): 6447-63, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15157079

RESUMO

Cytidine triphosphate synthetases (CTPSs) produce CTP from UTP and glutamine, and regulate intracellular CTP levels through interactions with the four ribonucleotide triphosphates. We solved the 2.3-A resolution crystal structure of Escherichia coli CTPS using Hg-MAD phasing. The structure reveals a nearly symmetric 222 tetramer, in which each bifunctional monomer contains a dethiobiotin synthetase-like amidoligase N-terminal domain and a Type 1 glutamine amidotransferase C-terminal domain. For each amidoligase active site, essential ATP- and UTP-binding surfaces are contributed by three monomers, suggesting that activity requires tetramer formation, and that a nucleotide-dependent dimer-tetramer equilibrium contributes to the observed positive cooperativity. A gated channel that spans 25 A between the glutamine hydrolysis and amidoligase active sites provides a path for ammonia diffusion. The channel is accessible to solvent at the base of a cleft adjoining the glutamine hydrolysis active site, providing an entry point for exogenous ammonia. Guanine nucleotide binding sites of structurally related GTPases superimpose on this cleft, providing insights into allosteric regulation by GTP. Mutations that confer nucleoside drug resistance and release CTP inhibition map to a pocket that neighbors the UTP-binding site and can accommodate a pyrimidine ring. Its location suggests that competitive feedback inhibition is affected via a distinct product/drug binding site that overlaps the substrate triphosphate binding site. Overall, the E. coli structure provides a framework for homology modeling of other CTPSs and structure-based design of anti-CTPS therapeutics.


Assuntos
Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/química , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Antiparasitários/farmacologia , Sítios de Ligação , Carbono-Nitrogênio Ligases/genética , Cristalografia por Raios X , Citidina Trifosfato/metabolismo , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutamato Sintase/química , Glutamato Sintase/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
20.
Biophys J ; 86(3): 1632-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990490

RESUMO

We used high-resolution atomic force microscopy to image the compaction of linear and circular DNA by the yeast mitochondrial protein Abf2p, which plays a major role in packaging mitochondrial DNA. Atomic force microscopy images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At a high concentration of Abf2p DNA collapses into a tight nucleoprotein complex. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of Abf2p. We also derived a polymer statistical mechanics model that provides a quantitative description of compaction observed in our experiments. This model shows that sharp bends in the DNA backbone are often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for Abf2p. These studies indicate that Abf2p compacts DNA through a simple mechanism that involves bending of the DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance and organization.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , DNA/química , DNA/ultraestrutura , Modelos Químicos , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/ultraestrutura , Sítios de Ligação , Simulação por Computador , Substâncias Macromoleculares , Microscopia de Força Atômica , Proteínas Mitocondriais/química , Proteínas Mitocondriais/ultraestrutura , Conformação de Ácido Nucleico , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa