Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biol Chem ; 295(6): 1754-1766, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31901078

RESUMO

Ten-eleven translocation-2 (TET2) is a member of the methylcytosine dioxygenase family of enzymes and has been implicated in cancer and aging because of its role as a global epigenetic modifier. TET2 has a large N-terminal domain and a catalytic C-terminal region. Previous reports have demonstrated that the TET2 catalytic domain remains active independently of the N-terminal domain. As such, the function of the N terminus of this large protein remains poorly characterized. Here, using yeast two-hybrid screening, co-immunoprecipitation, and several biochemical assays, we found that several isoforms of the 14-3-3 family of proteins bind TET2. 14-3-3 proteins bound TET2 when it was phosphorylated at Ser-99. In particular, we observed that AMP-activated protein kinase-mediated phosphorylation at Ser-99 promotes TET2 stability and increases global DNA 5-hydroxymethylcytosine levels. The interaction of 14-3-3 proteins with TET2 protected the Ser-99 phosphorylation, and disruption of this interaction both reduced TET2 phosphorylation and decreased TET2 stability. Furthermore, we noted that protein phosphatase 2A can interact with TET2 and dephosphorylate Ser-99. Collectively, these results provide detailed insights into the role of the TET2 N-terminal domain in TET2 regulation. Moreover, they reveal the dynamic nature of TET2 protein regulation that could have therapeutic implications for disease states resulting from reduced TET2 levels or activity.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Dioxigenases , Células HEK293 , Humanos , Camundongos , Fosforilação , Ligação Proteica , Isoformas de Proteínas/metabolismo
2.
Eur J Neurosci ; 46(7): 2241-2252, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28612962

RESUMO

A greater understanding of neural mechanisms contributing to anxiety is needed in order to develop better therapeutic interventions. This study interrogates a novel molecular mechanism that shapes anxiety-like behaviour, demonstrating that the microRNA miR-101a-3p and its target, enhancer of zeste homolog 2 (Ezh2) in the amygdala, contribute to rodent anxiety-like behaviour. We utilized rats that were selectively bred for differences in emotionality and stress reactivity, showing that high-novelty-responding (HR) rats, which display low trait anxiety, have lower miR-101a-3p levels in the amygdala compared to low-novelty-responding (LR) rats that characteristically display high trait anxiety. To determine whether there is a causal relationship between amygdalar miR-101a-3p and anxiety behaviour, we used a viral approach to overexpress miR-101a-3p in the amygdala of HR rats and test whether it would increase their typically low levels of anxiety-like behaviour. We found that increasing miR-101a-3p in the amygdala increased HRs' anxiety-like behaviour in the open-field test and elevated plus maze. Viral-mediated miR-101a-3p overexpression also reduced expression of the histone methyltransferase Ezh2, which mediates gene silencing via trimethylation of histone 3 at lysine 27 (H3K27me3). Knockdown of Ezh2 with short-interfering RNA (siRNA) also increased HRs' anxiety-like behaviour, but to a lesser degree than miR-101a-3p overexpression. Overall, our data demonstrate that increasing miR-101a-3p expression in the amygdala increases anxiety-like behaviour and that this effect is at least partially mediated via repression of Ezh2. This work adds to the growing body of evidence implicating miRNAs and epigenetic regulation as molecular mediators of anxiety behaviour.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , MicroRNAs/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Masculino , Aprendizagem em Labirinto , MicroRNAs/genética , Ratos
3.
J Immunol ; 193(11): 5604-12, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355920

RESUMO

Circulating monocytes carrying human CMV (HCMV) migrate into tissues, where they differentiate into HCMV-infected resident macrophages that upon interaction with bacterial products may potentiate tissue inflammation. In this study, we investigated the mechanism by which HCMV promotes macrophage-orchestrated inflammation using a clinical isolate of HCMV (TR) and macrophages derived from primary human monocytes. HCMV infection of the macrophages, which was associated with viral DNA replication, significantly enhanced TNF-α, IL-6, and IL-8 gene expression and protein production in response to TLR4 ligand (LPS) stimulation compared with mock-infected LPS-stimulated macrophages during a 6-d in vitro infection. HCMV infection also potentiated TLR5 ligand-stimulated cytokine production. To elucidate the mechanism by which HCMV infection potentiated inducible macrophage responses, we show that infection by HCMV promoted the maintenance of surface CD14 and TLR4 and TLR5, which declined over time in mock-infected macrophages, and enhanced both the intracellular expression of adaptor protein MyD88 and the inducible phosphorylation of IκBα and NF-κB. These findings provide additional information toward elucidating the mechanism by which HCMV potentiates bacteria-induced NF-κB-mediated macrophage inflammatory responses, thereby enhancing organ inflammation in HCMV-infected tissues.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Macrófagos/imunologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/virologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/imunologia , Receptor 5 Toll-Like/imunologia , Replicação Viral
4.
J Neurochem ; 128(6): 950-61, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24138030

RESUMO

Parkinson's disease is a neurodegenerative movement disorder. The histopathology of Parkinson's disease comprises proteinaceous inclusions known as Lewy bodies, which contains aggregated α-synuclein. Cathepsin D (CD) is a lysosomal protease previously demonstrated to cleave α-synuclein and decrease its toxicity in both cell lines and mouse brains in vivo. Here, we show that pharmacological inhibition of CD, or introduction of catalytically inactive mutant CD, resulted in decreased CD activity and increased cathepsin B activity, suggesting a possible compensatory response to inhibition of CD activity. However, this increased cathepsin B activity was not sufficient to maintain α-synuclein degradation, as evidenced by the accumulation of endogenous α-synuclein. Interestingly, the levels of LC3, LAMP1, and LAMP2, proteins involved in autophagy-lysosomal activities, as well as total lysosomal mass as assessed by LysoTracker flow cytometry, were unchanged. Neither autophagic flux nor proteasomal activities differs between cells over-expressing wild-type versus mutant CD. These observations point to a critical regulatory role for that endogenous CD activity in dopaminergic cells in α-synuclein homeostasis which cannot be compensated for by increased Cathepsin B. These data support the potential need to enhance CD function in order to attenuate α-synuclein accumulation as a therapeutic strategy against development of synucleinopathy.


Assuntos
Catepsina B/metabolismo , Catepsina D/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Caspases/metabolismo , Catepsina D/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/fisiologia , Humanos , Lentivirus/genética , Lisossomos/metabolismo , Neuroblastoma , Neurônios/citologia , Neurônios/efeitos dos fármacos , Pepstatinas/farmacologia , Inibidores de Proteases/farmacologia
5.
Am J Physiol Cell Physiol ; 305(2): C228-37, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23703526

RESUMO

Endothelial adhesion molecules are critical effectors of inflammation ensuring coordinated interactions that allow leukocytes to home to sites of injury. These adhesion molecules are often extensively modified posttranslationaly by the addition of N-glycans, but if, or how, these modifications contribute to the protein function remains poorly understood. Herein we show that activated endothelial cells express two distinct N-glycoforms of intercellular adhesion molecule 1 (ICAM-1) that comprise a complex N-glycoform with α-2,6 sialic acid present at relatively high levels and a second, less abundant and previously undescribed high-mannose glycoform (HM-ICAM-1). This novel HM-ICAM-1 glycoform was also detected in human coronary artery specimens and moreover appeared to be the dominant glycoform in vivo. Production of exclusively HM-ICAM-1 in cells by α-mannosidase inhibition increased monocyte rolling and adhesion compared with mature ICAM-1 consistent with high-mannose epitopes providing leukocyte ligands. Cross-linking of ICAM-1 transmits outside-in signals that affect endothelial permeability and survival. Interestingly, cell signaling (assessed using ERK, VE-cadherin, and Akt phosphorylation) was maintained after cross-linking of HM-ICAM-1 compared with mature ICAM-1; however, interactions with the actin cytoskeleton were lost with HM-ICAM-1. These findings suggest that specific ICAM-1 N-glycoforms modulate distinct aspects of the inflammatory response and identify HM-ICAM-1 as a new therapeutic target for controlling leukocyte trafficking and endothelial inflammation.


Assuntos
Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/fisiologia , Transdução de Sinais/fisiologia , Animais , Células COS , Adesão Celular/fisiologia , Linhagem Celular , Chlorocebus aethiops , Citoesqueleto/fisiologia , Células Endoteliais/citologia , Glicosilação , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/genética , Isoformas de Proteínas
6.
Toxicol Appl Pharmacol ; 266(2): 233-44, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23147569

RESUMO

Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 µM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclinas/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Hospedeiro Imunocomprometido , Camundongos , Camundongos Nus , Antígeno Nuclear de Célula em Proliferação/análise , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Serina-Treonina Quinases TOR/metabolismo , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Toxicol Appl Pharmacol ; 272(3): 879-87, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23954561

RESUMO

Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses.


Assuntos
Imunidade Inata/efeitos dos fármacos , Macrófagos/imunologia , Óxidos/toxicidade , Transdução de Sinais/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Trióxido de Arsênio , Arsenicais , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Imunidade Inata/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
8.
J Biol Chem ; 285(14): 10497-507, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20123985

RESUMO

Macroautophagy (autophagy) is a process wherein bulk cytosolic proteins and damaged organelles are sequestered and degraded via the lysosome. Alterations in autophagy-associated proteins have been shown to cause neural tube closure defects, neurodegeneration, and tumor formation. Normal lysosome function is critical for autophagy completion and when altered may lead to an accumulation of autophagic vacuoles (AVs) and caspase activation. The tumor suppressor p53 is highly expressed in neural precursor cells (NPCs) and has an important role in the regulation of both autophagy and apoptosis. We hypothesized that altered lysosome function would lead to NPC death via an interaction between autophagy- and apoptosis-associated proteins. To test our hypothesis, we utilized FGF2-expanded NPCs and the neural stem cell line, C17.2, in combination with the lysosomotropic agent chloroquine (CQ) and the vacuolar ATPase inhibitor bafilomycin A1 (Baf A1). Both CQ and Baf A1 caused concentration- and time-dependent AV accumulation, p53 phosphorylation, increased damage regulator autophagy modulator levels, caspase-3 activation, and cell death. Short hairpin RNA knockdown of Atg7, but not Beclin1, expression significantly inhibited CQ- and Baf A1-induced cell death, indicating that Atg7 is an upstream mediator of lysosome dysfunction-induced cell death. Cell death and/or caspase-3 activation was also attenuated by protein synthesis inhibition, p53 deficiency, or Bax deficiency, indicating involvement of the intrinsic apoptotic death pathway. In contrast to lysosome dysfunction, starvation-induced AV accumulation was inhibited by either Atg7 or Beclin1 knockdown, and Atg7 knockdown had no effect on starvation-induced death. These findings indicate that Atg7- and Beclin1-induced autophagy plays a cytoprotective role during starvation but that Atg7 has a unique pro-apoptotic function in response to lysosome dysfunction.


Assuntos
Apoptose , Cerebelo/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Antifúngicos/farmacologia , Antimaláricos/farmacologia , Autofagia , Proteína 7 Relacionada à Autofagia , Western Blotting , Caspases/metabolismo , Cerebelo/citologia , Cloroquina/farmacologia , Fator 2 de Crescimento de Fibroblastos , Imunofluorescência , Lisossomos/patologia , Macrolídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Neurônios/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Proteína Supressora de Tumor p53/fisiologia , Proteína X Associada a bcl-2/fisiologia
9.
J Virol ; 84(7): 3162-77, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089649

RESUMO

Human cytomegalovirus (HCMV) virion assembly takes place in the nucleus and cytoplasm of infected cells. The HCMV virion tegument protein pp150 (ppUL32) is an essential protein of HCMV and has been suggested to play a role in the cytoplasmic phase of HCMV assembly. To further define its role in viral assembly and to identify host cell proteins that interact with pp150 during viral assembly, we utilized yeast two-hybrid analyses to detect an interaction between pp150 and Bicaudal D1 (BicD1), a protein thought to play a role in trafficking within the secretory pathway. BicD1 is known to interact with the dynein motor complex and the Rab6 GTPase. The interaction between pp150 and BicD1 was confirmed by coimmunoprecipitation and fluorescence resonance energy transfer. Depletion of BicD1 with short hairpin RNA (shRNA) caused decreased virus yield and a defect in trafficking of pp150 to the cytoplasmic viral assembly compartment (AC), without altering trafficking to the AC of another essential tegument protein, pp28, or the viral glycoprotein complex gM/gN. The C terminus of BicD1 has been previously shown to interact with the GTPase Rab6, suggesting a potential role for Rab6-mediated vesicular trafficking in HCMV assembly. Finally, overexpression of the N terminus of truncated BicD1 acts in a dominant-negative manner and leads to disruption of the AC and a decrease in the assembly of infectious virus. This phenotype was similar to that observed following overexpression of dynamitin (p50) and provided additional evidence that morphogenesis of the AC and virus assembly were dynein dependent.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas do Citoesqueleto/fisiologia , Fosfoproteínas/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/química , Dineínas/fisiologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Microtúbulos/fisiologia , Fosfoproteínas/análise , Estrutura Terciária de Proteína , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido , Proteínas da Matriz Viral/análise , Montagem de Vírus
10.
Biochim Biophys Acta ; 1769(1): 29-40, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17239456

RESUMO

RNA interference (RNAi) is implicated in maintaining tandem DNA arrays as constitutive heterochromatin. We used chromatin immunoprecipitation with antibodies to RNA polymerase II (RNAPol-ChIP) to test for transcription of the following repeat arrays in human cells: subtelomeric D4Z4, pericentromeric satellite 2, and centromeric satellite alpha. D4Z4 has a promoter-like sequence upstream of an ORF in its 3.3-kb repeat unit. A short D4Z4 array at 4q35 is linked to facioscapulohumeral muscular dystrophy (FSHD). By RNAPol-ChIP and RT-PCR, little or no transcription of D4Z4 was detected in FSHD and normal myoblasts; lymphoblasts from an FSHD patient, a control, and a patient with D4Z4 hypomethylation due to mutation of DNMT3B (ICF syndrome); and normal or cancer tissues. However, RNAPol-ChIP assays indicated transcription of D4Z4 in a chromosome 4-containing human-mouse somatic cell hybrid. ChIP and RT-PCR showed satellite DNA transcription in some cancers and lymphoblastoid cell lines, although only at a low level. Given the evidence for the involvement of RNAi in satellite DNA heterochromatinization, it is surprising that, at most, a very small fraction of satellite DNA was associated with RNA Pol II. In addition, our results do not support the previously hypothesized disease-linked differential transcription of D4Z4 sequences in short, FSHD-linked arrays.


Assuntos
DNA Satélite , Distrofia Muscular Facioescapuloumeral/genética , Sequências de Repetição em Tandem , Transcrição Gênica , Animais , Células Cultivadas , Humanos , Células Híbridas , Camundongos , Mioblastos , RNA Polimerase II
11.
Mucosal Immunol ; 11(6): 1694-1704, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076393

RESUMO

Intestinal macrophages in healthy human mucosa are profoundly down-regulated for inflammatory responses (inflammation anergy) due to stromal TGF-ß inactivation of NF-κB. Paradoxically, in cytomegalovirus (CMV) intestinal inflammatory disease, one of the most common manifestations of opportunistic CMV infection, intestinal macrophages mediate severe mucosal inflammation. Here we investigated the mechanism whereby CMV infection promotes macrophage-mediated mucosal inflammation. CMV infected primary intestinal macrophages but did not replicate in the cells or reverse established inflammation anergy. However, CMV infection of precursor blood monocytes, the source of human intestinal macrophages in adults, prevented stromal TGF-ß-induced differentiation of monocytes into inflammation anergic macrophages. Mechanistically, CMV up-regulated monocyte expression of the TGF-ß antagonist Smad7, blocking the ability of stromal TGF-ß to inactivate NF-κB, thereby enabling MyD88 and NF-κB-dependent cytokine production. Smad7 expression also was markedly elevated in mucosal tissue from subjects with CMV colitis and declined after antiviral ganciclovir therapy. Confirming these findings, transfection of Smad7 antisense oligonucleotide into CMV-infected monocytes restored monocyte susceptibility to stromal TGF-ß-induced inflammation anergy. Thus, CMV-infected monocytes that recruit to the mucosa, not resident macrophages, are the source of inflammatory macrophages in CMV mucosal disease and implicate Smad7 as a key regulator of, and potential therapeutic target for, CMV mucosal disease.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Inflamação/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Proteína Smad7/metabolismo , Células Cultivadas , Anergia Clonal , Humanos , Macrófagos/virologia , Monócitos/virologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Proteína Smad7/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
12.
J Clin Oncol ; 34(27): 3276-83, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27507879

RESUMO

PURPOSE: The biology of HIV-associated cancers may differ depending on immunologic and virologic context during development. Therefore, an understanding of the burden of Kaposi's sarcoma (KS) and non-Hodgkin lymphoma (NHL) relative to antiretroviral therapy (ART), virologic suppression, and CD4 count is important. PATIENTS AND METHODS: KS and NHL diagnoses during 1996 to 2011 were identified among patients with HIV infection in eight clinical cohorts in the United States. Among patients in routine HIV clinical care, the proportion of cases in categories of ART use, HIV RNA, and CD4 count at diagnosis were described across calendar time. Person-time and incidence rates were calculated for each category. RESULTS: We identified 466 patients with KS and 258 with NHL. In recent years, KS was more frequently diagnosed after ART initiation (55% in 1996 to 2001 v 76% in 2007 to 2011; P-trend = .02). The proportion of patients with NHL who received ART was higher but stable over time (83% overall; P-trend = .81). An increasing proportion of KS and NHL occurred at higher CD4 counts (P < .05 for KS and NHL) and with undetectable HIV RNA (P < .05 for KS and NHL). In recent years, more person-time was contributed by patients who received ART, had high CD4 counts and had undetectable HIV RNA, whereas incidence rates in these same categories remained stable or declined. CONCLUSION: Over time, KS and NHL occurred at higher CD4 counts and lower HIV RNA values, and KS occurred more frequently after ART initiation. These changes were driven by an increasing proportion of patients with HIV who received effective ART, had higher CD4 counts, and had suppressed HIV RNA and not by increases in cancer risk within these subgroups. An improved understanding of HIV-associated cancer pathogenesis and outcomes in the context of successful ART is therefore important.


Assuntos
Infecções por HIV/epidemiologia , Linfoma não Hodgkin/epidemiologia , Sarcoma de Kaposi/epidemiologia , Adulto , Estudos de Coortes , Feminino , Infecções por HIV/patologia , Humanos , Incidência , Linfoma Difuso de Grandes Células B/epidemiologia , Linfoma Difuso de Grandes Células B/virologia , Linfoma não Hodgkin/patologia , Linfoma não Hodgkin/virologia , Masculino , Pessoa de Meia-Idade , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Estados Unidos/epidemiologia
13.
Oncotarget ; 6(20): 17895-910, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26255626

RESUMO

Aberrations in the mTOR (mechanistic target of rapamycin) axis are frequently reported in cancer. Using publicly available tumor genome sequencing data, we identified several point mutations in MTOR and its upstream regulator RHEB (Ras homolog enriched in brain) in patients with clear cell renal cell carcinoma (ccRCC), the most common histology of kidney cancer. Interestingly, we found a prominent cluster of hyperactivating mutations in the FAT (FRAP-ATM-TTRAP) domain of mTOR in renal cell carcinoma that led to an increase in both mTORC1 and mTORC2 activities and led to an increased proliferation of cells. Several of the FAT domain mutants demonstrated a decreased binding of DEPTOR (DEP domain containing mTOR-interacting protein), while a subset of these mutations showed altered binding of the negative regulator PRAS40 (proline rich AKT substrate 40). We also identified a recurrent mutation in RHEB in ccRCC patients that leads to an increase in mTORC1 activity. In vitro characterization of this RHEB mutation revealed that this mutant showed considerable resistance to TSC2 (Tuberous Sclerosis 2) GAP (GTPase activating protein) activity, though its interaction with TSC2 remained unaltered. Mutations in the FAT domain of MTOR and in RHEB remained sensitive to rapamycin, though several of these mutations demonstrated residual mTOR kinase activity after treatment with rapamycin at clinically relevant doses. Overall, our data suggests that point mutations in the mTOR pathway may lead to downstream mTOR hyperactivation through multiple different mechanisms to confer a proliferative advantage to a tumor cell.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Neuropeptídeos/genética , Mutação Puntual , Serina-Treonina Quinases TOR/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proliferação de Células/efeitos dos fármacos , Análise Mutacional de DNA , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Predisposição Genética para Doença , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Front Biosci ; 7: d726-30, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11861213

RESUMO

Kaposi's sarcoma(KS)-associated herpes virus (KSHV) or human herpesvirus 8 (HHV-8) is highly associated with KS, primary effusion lymphoma (PEL), and multicentric Castleman's disease, an aggressive lymphoproliferative disorder (1-3). Most tumor cells are latently infected with KSHV in which a small subset of viral genes are expressed (4-6). Of these latently expressed genes, the latency-associated nuclear antigen (LANA1, LNA, or LNA1) is the only protein consistently shown to be highly expressed by in situ hybridization and immunohistochemistry (7-10). In the past few years multiple functions have been demonstrated for LANA1. Here we review LANA1's roles in KSHV infection. Topics discussed include LANA1's roles in episome persistence, regulation of transcription and interaction with cellular proteins.


Assuntos
Antígenos Virais/fisiologia , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/fisiologia , Latência Viral , Animais , Antígenos Virais/biossíntese , Humanos , Proteínas Nucleares/biossíntese , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia
15.
PLoS One ; 9(1): e86338, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466036

RESUMO

Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin inhibits melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Flavonóis , Humanos , Melanoma , NF-kappa B/metabolismo , Invasividade Neoplásica , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Vimentina/metabolismo
16.
Monoclon Antib Immunodiagn Immunother ; 33(6): 420-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25513981

RESUMO

Although antibodies are commercially available to allow investigation into the biology of the age-regulating protein Klotho, problems with antibody specificity and application functionality are significant barriers to progress. Chief among these limitations is the inability of current tools to allow in vivo validation of binding partners originally identified through transfection of tagged proteins. To overcome this barrier, we generated a series of hybridoma cell lines by immunizing rats with a GST-KL1 fusion protein. Purified antibodies generated from these cell lines differentially detect human or mouse Klotho protein via Western blot, immunocyto/histochemistry, and immunoprecipitation. Specificity of antibody binding to Klotho was confirmed by mass spectrometry following immunoprecipitation. With this confidence in antibody specificity, co-immunoprecipitation was utilized to validate the interaction of Klotho/FGFR and Klotho/wnt7a in mouse kidney lysates.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Glucuronidase/imunologia , Hibridomas/imunologia , Animais , Anticorpos Monoclonais/genética , Western Blotting , Primers do DNA/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Imunoprecipitação , Proteínas Klotho , Espectrometria de Massas , Camundongos , Plasmídeos/genética , Ratos
17.
PLoS One ; 7(6): e39586, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761832

RESUMO

Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in various neurodegenerative diseases including Parkinson Disease, Alzheimer Disease and Huntington Disease. PUMA (p53 upregulated modulator of apoptosis) and BIM (BCL2 interacting mediator of cell death), pro-apoptotic BH3 domain-only, BCL2 family members, have previously been shown to regulate ER stress-induced cell death, but the upstream signaling pathways that regulate this response in neuronal cells are incompletely defined. Consistent with previous studies, we show that both PUMA and BIM are induced in response to ER stress in neuronal cells and that transcriptional induction of PUMA regulates ER stress-induced cell death, independent of p53. CHOP (C/EBP homologous protein also known as GADD153; gene name Ddit3), a critical initiator of ER stress-induced apoptosis, was found to regulate both PUMA and BIM expression in response to ER stress. We further show that CHOP knockdown prevents perturbations in the AKT (protein kinase B)/FOXO3a (forkhead box, class O, 3a) pathway in response to ER stress. CHOP co-immunoprecipitated with FOXO3a in tunicamycin treated cells, suggesting that CHOP may also regulate other pro-apoptotic signaling cascades culminating in PUMA and BIM activation and cell death. In summary, CHOP regulates the expression of multiple pro-apoptotic BH3-only molecules through multiple mechanisms, making CHOP an important therapeutic target relevant to a number of neurodegenerative conditions.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Proteínas de Membrana/genética , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Telencéfalo/citologia , Telencéfalo/efeitos dos fármacos , Telencéfalo/metabolismo , Fator de Transcrição CHOP/genética , Proteínas Supressoras de Tumor/genética , Tunicamicina/farmacologia
18.
Future Microbiol ; 6(12): 1399-413, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22122438

RESUMO

Latency-associated nuclear antigen (LANA) is encoded by the Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) open reading frame 73. LANA is expressed during latent KSHV infection of cells, including tumor cells, such as primary effusion lymphoma, KS and multicentric Castleman's disease. Latently infected cells have multiple extrachromosomal copies of covalently closed circular KSHV genomes (episomes) that are stably maintained in proliferating cells. LANA's best characterized function is that of mediating episome persistence. It does so by binding terminal repeat sequences to the chromosomal matrix, thus ensuring episome replication with each cell division and efficient DNA segregation to daughter nuclei after mitosis. To achieve these functions, LANA associates with different host cell proteins, including chromatin-associated proteins and proteins involved in DNA replication. In addition to episome maintenance, LANA has transcriptional regulatory effects and affects cell growth. LANA exerts these functions through interactions with different cell proteins.


Assuntos
Antígenos Virais/metabolismo , Herpesvirus Humano 8/patogenicidade , Proteínas Nucleares/metabolismo , Fatores de Virulência/metabolismo , Latência Viral , Divisão Celular , Segregação de Cromossomos , Replicação do DNA , DNA Viral/genética , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Humanos , Plasmídeos/genética , Replicação Viral
19.
J Neuropathol Exp Neurol ; 68(12): 1326-38, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19915483

RESUMO

Perinatal hypoxia-ischemia may result in long-term neurological deficits. In addition to producing neuron death, HI causes death of neural precursor cells (NPCs) in the developing brain. To characterize the molecular pathways that regulate hypoxia-induced death of NPCs, we treated a mouse neural stem cell line (C17.2 cells) and fibroblastic growth factor II-expanded primary NPCs derived from wild-type or gene-disrupted mice, with oxygen glucose deprivation or the hypoxia mimetics desferrioxamine or cobalt chloride. Neural precursor cells undergoing hypoxia exhibited time- and concentration-dependent caspase-3 activation and cell death, which was significantly reduced by treatment with a broad caspase inhibitor or protein synthesis inhibition. Bax/Bak-deficient NPCs were protected from desferrioxamine-induced death and exhibited minimal caspase-3 activation. Oxygen glucose deprivation or hypoxia-mimetic exposure also resulted in increased hypoxia-inducible factor alpha and bcl-2/adenovirus E1B 19-kd interacting protein 3 (BNIP3) expression. BNIP3 shRNA treatment failed to affect hypoxia-induced caspase-3 activation but inhibited cell death and nuclear translocation of apoptosis-inducing factor, indicating that BNIP3 is an important regulator of caspase-independent NPC death after hypoxia. These studies demonstrate that hypoxia activates both caspase-dependent and -independent NPC death pathways that are critically regulated by multiple Bcl-2 family members.


Assuntos
Apoptose/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neurônios/efeitos dos fármacos , Neurônios/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia
20.
Virology ; 357(2): 149-57, 2007 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16979209

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes.


Assuntos
Antígenos Virais/metabolismo , Centrômero/metabolismo , Cromossomos/virologia , Herpesvirus Humano 8/genética , Mitose/genética , Proteínas Nucleares/metabolismo , Antígenos Virais/genética , Linhagem Celular , Cromossomos/metabolismo , DNA Viral/química , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 8/fisiologia , Humanos , Proteínas Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa