Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35137183

RESUMO

Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.


Assuntos
Aracnídeos , Animais , Aracnídeos/genética , Evolução Biológica , Fósseis , Genoma , Filogenia
2.
Crit Care Med ; 51(12): 1638-1649, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651262

RESUMO

OBJECTIVES: To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS). DESIGN: A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts. SETTING: A network of multidisciplinary ICUs. PATIENTS: A total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94). CONCLUSIONS: Both machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Unidades de Terapia Intensiva , Pulmão , Estudos Prospectivos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia
3.
Mol Ecol ; 32(8): 1925-1942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680370

RESUMO

Divergence in the face of high dispersal capabilities is a documented but poorly understood phenomenon. The white-tailed eagle (Haliaeetus albicilla) has a large geographic dispersal capability and should theoretically be able to maintain genetic homogeneity across its dispersal range. However, following analysis of the genomic variation of white-tailed eagles, from both historical and contemporary samples, clear signatures of ancient biogeographic substructure across Europe and the North-East Atlantic is observed. The greatest genomic differentiation was observed between island (Greenland and Iceland) and mainland (Denmark, Norway and Estonia) populations. The two island populations share a common ancestry from a single mainland population, distinct from the other sampled mainland populations, and despite the potential for high connectivity between Iceland and Greenland they are well separated from each other and are characterized by inbreeding and little variation. Temporal differences also highlight a pattern of regional populations persisting despite the potential for admixture. All sampled populations generally showed a decline in effective population size over time, which may have been shaped by four historical events: (1) Isolation of refugia during the last glacial period 110-115,000 years ago, (2) population divergence following the colonization of the deglaciated areas ~10,000 years ago, (3) human population expansion, which led to the settlement in Iceland ~1100 years ago, and (4) human persecution and exposure to toxic pollutants during the last two centuries.


Assuntos
Águias , Poluentes Ambientais , Animais , Humanos , Águias/genética , Europa (Continente) , Noruega , Genômica , Variação Genética/genética
4.
Mol Phylogenet Evol ; 183: 107705, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36707009

RESUMO

Caves have long been recognized as a window into the mechanisms of diversification and convergent evolution, due to the unique conditions of isolation and life in the dark. These lead to adaptations and reduce dispersal and gene flow, resulting in high levels of speciation and endemism. The Israeli cave arachnofauna remains poorly known, but likely represents a rich assemblage. In a recent survey, we found troglophilic funnel-web spiders of the genus Tegenaria in 26 caves, present mostly at the cave entrance ecological zone. In addition, we identified at least 14 caves inhabited by troglobitic Tegenaria, which are present mostly in the twilight and dark ecological zones. Ten of the caves, located in the north and center of Israel, are inhabited by both troglophilic and troglobitic Tegenaria. These spiders bear superficial phenotypic similarities but differ in the levels of eye reduction and pigmentation. To test whether these taxa constitute separate species, as well as understand their relationships to epigean counterparts, we conducted a broad geographic sampling of cave-dwelling Tegenaria in Israel and Palestine, using morphological and molecular evidence. Counterintuitively, our results show that the troglobitic Tegenaria we studied are distantly related to the troglophilic Tegenaria found at each of the cave entrances we sampled. Moreover, seven new troglobitic species can be identified based on genetic differences, eye reduction level, and features of the female and male genitalia. Our COI analysis suggest that the Israeli troglobitic Tegenaria species are more closely related to eastern-Mediterranean congeners than to the local sympatric troglophile Tegenaria species, suggesting a complex biogeographic history.


Assuntos
Aranhas , Animais , Feminino , Masculino , Aranhas/genética , Filogenia , Israel , Cavernas , Pigmentação
5.
Syst Biol ; 71(6): 1281-1289, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35348798

RESUMO

Scorpions constitute a charismatic lineage of arthropods and comprise more than 2500 described species. Found throughout various tropical and temperate habitats, these predatory arachnids have a long evolutionary history, with a fossil record that began in the Silurian. While all scorpions are venomous, the asymmetrically diverse family Buthidae harbors nearly half the diversity of extant scorpions, and all but one of the 58 species that are medically significant to humans. However, the lack of a densely sampled scorpion phylogeny has hindered broader inferences of the diversification dynamics of scorpion toxins. To redress this gap, we assembled a phylogenomic data set of 100 scorpion venom gland transcriptomes and genomes, emphasizing the sampling of highly toxic buthid genera. To infer divergence times of venom gene families, we applied a phylogenomic node dating approach for the species tree in tandem with phylostratigraphic bracketing to estimate the minimum ages of mammal-specific toxins. Our analyses establish a robustly supported phylogeny of scorpions, particularly with regard to relationships between medically significant taxa. Analysis of venom gene families shows that mammal-active sodium channel toxins (NaTx) have independently evolved in five lineages within Buthidae. Temporal windows of mammal-targeting toxin origins are correlated with the basal diversification of major scorpion mammal predators such as shrews, bats, and rodents. These results suggest an evolutionary model of relatively recent diversification of buthid NaTx homologs in response to the diversification of scorpion predators. [Adaptation; arachnids; phylogenomic dating; phylostratigraphy; venom.].


Assuntos
Venenos de Escorpião , Escorpiões , Animais , Humanos , Mamíferos , Filogenia , Venenos de Escorpião/genética , Escorpiões/genética , Canais de Sódio/genética
6.
Mol Biol Evol ; 38(6): 2446-2467, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33565584

RESUMO

Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with long-branch attraction artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale data sets. Pseudoscorpion placement is particularly variable across data sets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount long-branch attraction, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones.


Assuntos
Filogenia , Escorpiões/classificação , Animais , Feminino , Duplicação Gênica , Genes Homeobox , Masculino , Escorpiões/genética
7.
Mol Biol Evol ; 38(2): 686-701, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32915961

RESUMO

Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.


Assuntos
Artrópodes/genética , Filogenia , Animais , Feminino , Genoma , Masculino
8.
Mol Phylogenet Evol ; 175: 107560, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35779767

RESUMO

Caves constitute ideal study systems for investigating adaptation and speciation, as the abiotic conditions shared by aphotic habitats exert a set of environmental filters on their communities. Arachnids constitute an important component of many cave ecosystems worldwide. We investigated the population genomics of two whip spider species: Sarax ioanniticus, a widely distributed parthenogenetic species found across the eastern Mediterranean; and S. israelensis, a recently described troglomorphic species that is endemic to caves in Israel. Here, we show that S. israelensis is completely genetically distinct from S. ioanniticus and most likely also a parthenogen. Counterintuitively, despite the lack of genetic variability within S. ioanniticus and S. israelensis, we discovered considerable variation in the degree of median eye reduction, particularly in the latter species. Natural history data from captive-bred specimens of S. israelensis validated the interpretation of parthenogenesis. Our results are most consistent with a scenario of a sexual ancestral species that underwent speciation, followed by independent transitions to apomictic parthenogenesis in each of the two daughter species. Moreover, the lack of genetic variability suggests that variation in eye morphology in S. israelensis is driven exclusively by epigenetic mechanisms.


Assuntos
Aracnídeos , Aranhas , Adaptação Fisiológica , Animais , Aracnídeos/anatomia & histologia , Ecossistema , Partenogênese/genética , Filogenia , Aranhas/genética
9.
Proc Biol Sci ; 288(1956): 20211168, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34344178

RESUMO

Chelicerate arthropods exhibit dynamic genome evolution, with ancient whole-genome duplication (WGD) events affecting several orders. Yet, genomes remain unavailable for a number of poorly studied orders, such as Opiliones (daddy-long-legs), which has hindered comparative study. We assembled the first harvestman draft genome for the species Phalangium opilio, which bears elongate, prehensile appendages, made possible by numerous distal articles called tarsomeres. Here, we show that the genome of P. opilio exhibits a single Hox cluster and no evidence of WGD. To investigate the developmental genetic basis for the quintessential trait of this group-the elongate legs-we interrogated the function of the Hox genes Deformed (Dfd) and Sex combs reduced (Scr), and a homologue of Epidermal growth factor receptor (Egfr). Knockdown of Dfd incurred homeotic transformation of two pairs of legs into pedipalps, with dramatic shortening of leg segments in the longest leg pair, whereas homeosis in L3 is only achieved upon double Dfd + Scr knockdown. Knockdown of Egfr incurred shortened appendages and the loss of tarsomeres. The similarity of Egfr loss-of-function phenotypic spectra in insects and this arachnid suggest that repeated cooption of EGFR signalling underlies the independent gains of supernumerary tarsomeres across the arthropod tree of life.


Assuntos
Aracnídeos , Animais , Aracnídeos/genética , Extremidades , Genes Homeobox , Genoma , Insetos
10.
Brain ; 143(3): 833-843, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049333

RESUMO

How the brain recovers from general anaesthesia is poorly understood. Neurocognitive problems during anaesthesia recovery are associated with an increase in morbidity and mortality in patients. We studied intracortical neuronal dynamics during transitions from propofol-induced unconsciousness into consciousness by directly recording local field potentials and single neuron activity in a functionally and anatomically interconnecting somatosensory (S1, S2) and ventral premotor (PMv) network in primates. Macaque monkeys were trained for a behavioural task designed to determine trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We found that neuronal dynamics were dissociated between S1 and higher-order PMv prior to return of consciousness. The return of consciousness was distinguishable by a distinctive return of interregionally coherent beta oscillations and disruption of the slow-delta oscillations. Clustering analysis demonstrated that these state transitions between wakefulness and unconsciousness were rapid and unstable. In contrast, return of pre-anaesthetic task performance was observed with a gradual increase in the coherent beta oscillations. We also found that recovery end points significantly varied intra-individually across sessions, as compared to a rather consistent loss of consciousness time. Recovery of single neuron multisensory responses appeared to be associated with the time of full performance recovery rather than the length of recovery time. Similar to loss of consciousness, return of consciousness was identified with an abrupt shift of dynamics and the regions were dissociated temporarily during the transition. However, the actual dynamics change during return of consciousness is not simply an inverse of loss of consciousness, suggesting a unique process.


Assuntos
Ondas Encefálicas/fisiologia , Estado de Consciência/fisiologia , Córtex Motor/fisiologia , Propofol/farmacologia , Córtex Somatossensorial/fisiologia , Inconsciência/fisiopatologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Período de Recuperação da Anestesia , Animais , Nível de Alerta/fisiologia , Percepção Auditiva/fisiologia , Eletroencefalografia , Macaca , Masculino , Vias Neurais/fisiologia , Primatas , Percepção do Tato/fisiologia , Inconsciência/induzido quimicamente
11.
BMC Genomics ; 21(1): 811, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225889

RESUMO

BACKGROUND: Arachnids are important components of cave ecosystems and display many examples of troglomorphisms, such as blindness, depigmentation, and elongate appendages. Little is known about how the eyes of arachnids are specified genetically, let alone the mechanisms for eye reduction and loss in troglomorphic arachnids. Additionally, duplication of Retinal Determination Gene Network (RDGN) homologs in spiders has convoluted functional inferences extrapolated from single-copy homologs in pancrustacean models. RESULTS: We investigated a sister species pair of Israeli cave whip spiders, Charinus ioanniticus and C. israelensis (Arachnopulmonata, Amblypygi), of which one species has reduced eyes. We generated embryonic transcriptomes for both Amblypygi species, and discovered that several RDGN homologs exhibit duplications. We show that duplication of RDGN homologs is systemic across arachnopulmonates (arachnid orders that bear book lungs), rather than being a spider-specific phenomenon. A differential gene expression (DGE) analysis comparing the expression of RDGN genes in field-collected embryos of both species identified candidate RDGN genes involved in the formation and reduction of eyes in whip spiders. To ground bioinformatic inference of expression patterns with functional experiments, we interrogated the function of three candidate RDGN genes identified from DGE using RNAi in the spider Parasteatoda tepidariorum. We provide functional evidence that one of these paralogs, sine oculis/Six1 A (soA), is necessary for the development of all arachnid eye types. CONCLUSIONS: Our work establishes a foundation to investigate the genetics of troglomorphic adaptations in cave arachnids, and links differential gene expression to an arthropod eye phenotype for the first time outside of Pancrustacea. Our results support the conservation of at least one RDGN component across Arthropoda and provide a framework for identifying the role of gene duplications in generating arachnid eye diversity.


Assuntos
Aracnídeos , Aranhas , Animais , Aracnídeos/genética , Ecossistema , Duplicação Gênica , Fenótipo , Aranhas/genética
12.
Syst Biol ; 68(6): 896-917, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30917194

RESUMO

Horseshoe crabs (Xiphosura) are traditionally regarded as sister group to the clade of terrestrial chelicerates (Arachnida). This hypothesis has been challenged by recent phylogenomic analyses, but the non-monophyly of Arachnida has consistently been disregarded as artifactual. We re-evaluated the placement of Xiphosura among chelicerates using the most complete phylogenetic data set to date, expanding outgroup sampling, and including data from whole genome sequencing projects. In spite of uncertainty in the placement of some arachnid clades, all analyses show Xiphosura consistently nested within Arachnida as the sister group to Ricinulei (hooded tick spiders). It is apparent that the radiation of arachnids is an old one and occurred over a brief period of time, resulting in several consecutive short internodes, and thus is a potential case for the confounding effects of incomplete lineage sorting (ILS). We simulated coalescent gene trees to explore the effects of increasing levels of ILS on the placement of horseshoe crabs. In addition, common sources of systematic error were evaluated, as well as the effects of fast-evolving partitions and the dynamics of problematic long branch orders. Our results indicated that the placement of horseshoe crabs cannot be explained by missing data, compositional biases, saturation, or ILS. Interrogation of the phylogenetic signal showed that the majority of loci favor the derived placement of Xiphosura over a monophyletic Arachnida. Our analyses support the inference that horseshoe crabs represent a group of aquatic arachnids, comparable to aquatic mites, breaking a long-standing paradigm in chelicerate evolution and altering previous interpretations of the ancestral transition to the terrestrial habitat. Future studies testing chelicerate relationships should approach the task with a sampling strategy where the monophyly of Arachnida is not held as the premise.


Assuntos
Aracnídeos/classificação , Filogenia , Animais , Aracnídeos/genética , Classificação , Simulação por Computador , Genoma/genética
13.
Anesthesiology ; 132(4): 750-762, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32053559

RESUMO

BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate antagonist and is known for unique electrophysiologic profiles in electroencephalography. However, the mechanisms of ketamine-induced unconsciousness are not clearly understood. The authors have investigated neuronal dynamics of ketamine-induced loss and return of consciousness and how multisensory processing is modified in the primate neocortex. METHODS: The authors performed intracortical recordings of local field potentials and single unit activity during ketamine-induced altered states of consciousness in a somatosensory and ventral premotor network. The animals were trained to perform a button holding task to indicate alertness. Air puff to face or sound was randomly delivered in each trial regardless of their behavioral response. Ketamine was infused for 60 min. RESULTS: Ketamine-induced loss of consciousness was identified during a gradual evolution of the high beta-gamma oscillations. The slow oscillations appeared to develop at a later stage of ketamine anesthesia. Return of consciousness and return of preanesthetic performance level (performance return) were observed during a gradual drift of the gamma oscillations toward the beta frequency. Ketamine-induced loss of consciousness, return of consciousness, and performance return are all identified during a gradual change of the dynamics, distinctive from the abrupt neural changes at propofol-induced loss of consciousness and return of consciousness. Multisensory responses indicate that puff evoked potentials and single-unit firing responses to puff were both preserved during ketamine anesthesia, but sound responses were selectively diminished. Units with suppressed responses and those with bimodal responses appeared to be inhibited under ketamine and delayed in recovery. CONCLUSIONS: Ketamine generates unique intracortical dynamics during its altered states of consciousness, suggesting fundamentally different neuronal processes from propofol. The gradually shifting dynamics suggest a continuously conscious or dreaming state while unresponsive under ketamine until its deeper stage with the slow-delta oscillations. Somatosensory processing is preserved during ketamine anesthesia, but multisensory processing appears to be diminished under ketamine and through recovery.


Assuntos
Anestésicos Dissociativos/administração & dosagem , Estado de Consciência/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ketamina/administração & dosagem , Neocórtex/efeitos dos fármacos , Inconsciência/induzido quimicamente , Animais , Estado de Consciência/fisiologia , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Infusões Intravenosas , Macaca mulatta , Masculino , Neocórtex/fisiologia , Inconsciência/fisiopatologia
14.
Proc Biol Sci ; 286(1917): 20192426, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847768

RESUMO

The miniaturized arachnid order Palpigradi has ambiguous phylogenetic affinities owing to its odd combination of plesiomorphic and derived morphological traits. This lineage has never been sampled in phylogenomic datasets because of the small body size and fragility of most species, a sampling gap of immediate concern to recent disputes over arachnid monophyly. To redress this gap, we sampled a population of the cave-inhabiting species Eukoenenia spelaea from Slovakia and inferred its placement in the phylogeny of Chelicerata using dense phylogenomic matrices of up to 1450 loci, drawn from high-quality transcriptomic libraries and complete genomes. The complete matrix included exemplars of all extant orders of Chelicerata. Analyses of the complete matrix recovered palpigrades as the sister group of the long-branch order Parasitiformes (ticks) with high support. However, sequential deletion of long-branch taxa revealed that the position of palpigrades is prone to topological instability. Phylogenomic subsampling approaches that maximized taxon or dataset completeness recovered palpigrades as the sister group of camel spiders (Solifugae), with modest support. While this relationship is congruent with the location and architecture of the coxal glands, a long-forgotten character system that opens in the pedipalpal segments only in palpigrades and solifuges, we show that nodal support values in concatenated supermatrices can mask high levels of underlying topological conflict in the placement of the enigmatic Palpigradi.


Assuntos
Aracnídeos/classificação , Classificação/métodos , Filogenia , Animais , Cavernas , Genoma
15.
Mol Phylogenet Evol ; 121: 183-197, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29337274

RESUMO

The orchard spider, Leucauge venusta (Walckenaer, 1841) is one of the most common and abundant orb-weavers in North America. This species has a broad geographic distribution extending across tropical and temperate regions of the Americas from Canada to Brazil. Guided by a preliminary observation of the barcode gap between sequences from specimens of L. venusta collected in Florida and other North American localities, we collected across a transect through the southeastern USA to investigate the observed genetic divide. The dataset, complemented with additional samples from Mexico, and Brazil was analyzed for species delimitation using STACEY and bGMYC based on sequences from one nuclear (ITS2) and one mitochondrial marker (COI). The analyses clearly separate USA samples into two deeply divergent and geographically structured groups (north-south) which we interpret as two different species. We generated ecological niche models for these two groups rejecting a niche equivalence hypothesis for these lineages. Taxonomic changes are proposed based on these findings, Leucauge venusta is restricted to denote the northern clade, and its known distribution restricted to the USA. Leucauge argyrobapta (White, 1841) is removed from synonymy to denote the populations in Florida, Mexico and Brazil. Although the delimitation analyses suggest each of these geographic clusters within the L. argyrobapta samples represent different species, more specimens from Central and South America are needed to properly test the cohesion of L. argyrobapta populations.


Assuntos
Filogenia , Aranhas/genética , Animais , Brasil , Calibragem , Canadá , Ecossistema , Florida , Geografia , Masculino , México , Mitocôndrias/genética , América do Norte , Probabilidade , Especificidade da Espécie , Aranhas/classificação , Fatores de Tempo , Estados Unidos
16.
Mol Biol Evol ; 33(8): 2117-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189539

RESUMO

Current sequencing technologies are making available unprecedented amounts of genetic data for a large variety of species including nonmodel organisms. Although many phylogenomic surveys spend considerable time finding orthologs from the wealth of sequence data, these results do not transcend the original study and after being processed for specific phylogenetic purposes these orthologs do not become stable orthology hypotheses. We describe a procedure to detect and document the phylogenetic distribution of orthologs allowing researchers to use this information to guide selection of loci best suited to test specific evolutionary questions. At the core of this pipeline is a new phylogenetic orthology method that is neither affected by the position of the root nor requires explicit assignment of outgroups. We discuss the properties of this new orthology assessment method and exemplify its utility for phylogenomics using a small insects dataset. In addition, we exemplify the pipeline to identify and document stable orthologs for the group of orb-weaving spiders (Araneoidea) using RNAseq data. The scripts used in this study, along with sample files and additional documentation, are available at https://github.com/ballesterus/UPhO.


Assuntos
Genômica/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Animais , Afídeos/genética , Evolução Molecular , Pediculus/genética , Filogenia , Software
17.
Hum Mol Genet ; 24(25): 7265-85, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26464483

RESUMO

Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.


Assuntos
Corpo Estriado/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Doença de Huntington/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Eletrofisiologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Imuno-Histoquímica , Masculino , Camundongos , Microscopia Confocal , Transmissão Sináptica/genética
18.
Addict Biol ; 22(6): 1706-1718, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27457910

RESUMO

Caffeine has cognitive-enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor-independent form of LTP (CAF LTP) in the CA1 region of the hippocampus by promoting calcium-dependent secretion of BDNF, which subsequently activates TrkB-mediated signaling required for the expression of CAF LTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAF LTP, a process that requires cytosolic free Ca2+ . Consistent with the involvement of IRS2 signals in caffeine-mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2-/- mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3-kinase (PI3K) pathway. These findings indicate that TrkB-IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Feminino , Proteínas Substratos do Receptor de Insulina/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Camundongos , Modelos Animais
19.
Mol Phylogenet Evol ; 91: 135-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25988404

RESUMO

For high-level molecular phylogenies, a comprehensive sampling design is a key factor for not only improving inferential accuracy, but also for maximizing the explanatory power of the resulting phylogeny. Two standing problems in molecular phylogenies are the unstable placements of some deep and long branches, and the phylogenetic relationships shown by robust supported clades conflict with recognized knowledge. Empirical and theoretical studies suggest that increasing taxon sampling is expected to ameliorate, if not resolve, both problems; however, sometimes neither the current taxonomic system nor the established phylogeny can provide sufficient information to guide additional sampling design. We examined the phylogeny of the spider family Linyphiidae, and selected ingroup species based on epigynal morphology, which can be reconstructed in a phylogenetic context. Our analyses resulted in seven robustly supported clades within linyphiids. The placements of four deep and long branches are sensitive to variations in both outgroup and ingroup sampling, suggesting the possibility of long branch attraction artifacts. Results of ancestral state reconstruction indicate that successive state transformations of the epigynal plate are associated with early cladogenetic events in linyphiid diversification. Representatives of different subfamilies were mixed together within well supported clades and examination revealed that their defining characters, as per traditional taxonomy, are homoplastic. Furthermore, our results demonstrated that increasing taxon sampling produced a more informative framework, which in turn helps to study character evolution and interpret the relationships among linyphiid lineages. Additional defining characters are needed to revise the linyphiid taxonomic system based on our phylogenetic hypothesis.


Assuntos
Filogenia , Aranhas/classificação , Animais , Evolução Biológica , Especiação Genética , Aranhas/anatomia & histologia , Aranhas/genética
20.
Syst Biol ; 62(5): 763-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23749787

RESUMO

Non-homogeneous processes and, in particular, base compositional non-stationarity have long been recognized as a critical source of systematic error. But only a small fraction of current molecular systematic studies methodically examine and effectively account for the potentially confounding effect of non-stationarity. The problem is especially overlooked in multi-locus or phylogenomic scale analyses, in part because no efficient tools exist to accommodate base composition heterogeneity in large data sets. We present a detailed analysis of a data set with 20 genes and 214 taxa to study the phylogeny of flatfishes (Pleuronectiformes) and their position among percomorphs. Most genes vary significantly in base composition among taxa and fail to resolve flatfish monophyly and other emblematic groups, suggesting that non-stationarity may be causing systematic error. We show a strong association between base compositional bias and topological discordance among individual gene partitions and their inferred trees. Phylogenetic methods applying non-homogeneous models to accommodate non-stationarity have relatively minor effect to reduce gene tree discordance, suggesting that available computer programs applying these methods do not scale up efficiently to the data set of modest size analysed in this study. By comparing phylogenetic trees obtained with species tree (STAR) and concatenation approaches, we show that gene tree discordance in our data set is most likely due to base compositional biases than to incomplete lineage sorting. Multi-locus analyses suggest that the combined phylogenetic signal from all loci in a concatenated data set overcomes systematic biases induced by non-stationarity at each partition. Finally, relationships among flatfishes and their relatives are discussed in the light of these results. We find support for the monophyly of flatfishes and confirm findings from previous molecular phylogenetic studies suggesting their close affinity with several carangimorph groups (i.e., jack and allies, barracuda, archerfish, billfish and swordfish, threadfin, moonfish, beach salmon, and snook and barramundi).


Assuntos
Classificação , Linguados/classificação , Linguados/genética , Filogenia , Animais , Genoma , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa