Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioorg Med Chem Lett ; 88: 129280, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054759

RESUMO

Starting from the dialkylaniline indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor lead 3 (IDO1 HeLa IC50 = 7.0 nM), an iterative process of synthesis and screening led to cyclized analog 21 (IDO1 HeLa IC50 = 3.6 nM) which maintained the high potency of 3 while addressing issues of lipophilicity, cytochrome P450 (CYP) inhibition, hERG (human potassium ion channel Kv11.1) inhibition, Pregnane X Receptor (PXR) transactivation, and oxidative metabolic stability. An x-ray crystal structure of a biaryl alkyl ether 11 bound to IDO1 was obtained. Consistent with our earlier results, compound 11 was shown to bind to the apo form of the enzyme.


Assuntos
Inibidores Enzimáticos , Éteres , Humanos , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Células HeLa , Indolamina-Pirrol 2,3,-Dioxigenase
2.
Bioorg Med Chem Lett ; 75: 128951, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031020

RESUMO

We report herein, the discovery of BMS-737 (compound 33) as a potent, non-steroidal, reversible small molecule inhibitor demonstrating 11-fold selectivity for CYP17 lyase over CYP17 hydroxylase, as well as a clean xenobiotic CYP profile for the treatment of castration-resistant prostate cancer (CRPC). Extensive SAR studies on the initial lead 1 at three different regions of the molecule resulted in the identification of BMS-737, which demonstrated a robust 83% lowering of testosterone without any significant perturbation of the mineralocorticoid and glucocorticoid levels in cynomologous monkeys in a 1-day PK/PD study.


Assuntos
Liases , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glucocorticoides , Humanos , Masculino , Mineralocorticoides , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Esteroide 17-alfa-Hidroxilase , Testosterona , Xenobióticos
3.
Proc Natl Acad Sci U S A ; 115(13): 3249-3254, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531094

RESUMO

For cancer cells to survive and proliferate, they must escape normal immune destruction. One mechanism by which this is accomplished is through immune suppression effected by up-regulation of indoleamine 2,3-dioxygenase (IDO1), a heme enzyme that catalyzes the oxidation of tryptophan to N-formylkynurenine. On deformylation, kynurenine and downstream metabolites suppress T cell function. The importance of this immunosuppressive mechanism has spurred intense interest in the development of clinical IDO1 inhibitors. Herein, we describe the mechanism by which a class of compounds effectively and specifically inhibits IDO1 by targeting its apo-form. We show that the in vitro kinetics of inhibition coincide with an unusually high rate of intrinsic enzyme-heme dissociation, especially in the ferric form. X-ray crystal structures of the inhibitor-enzyme complexes show that heme is displaced from the enzyme and blocked from rebinding by these compounds. The results reveal that apo-IDO1 serves as a unique target for inhibition and that heme lability plays an important role in posttranslational regulation.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/química , Apoproteínas/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HeLa , Heme/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Concentração Inibidora 50 , Mioglobina/química
4.
Bioorg Med Chem Lett ; 28(4): 732-736, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29398543

RESUMO

A novel series of o-phenylenediamine-based inhibitors of indoleamine 2,3-dioxygenase (IDO) has been identified. IDO is a heme-containing enzyme, overexpressed in the tumor microenvironment of many cancers, which can contribute to the suppression of the host immune system. Synthetic modifications to a previously described diarylether series resulted in an additional degree of molecular diversity which was exploited to afford compounds that demonstrated significant potency in the HeLa human cervical cancer IDO1 assay. .


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Fenilenodiaminas/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Microssomos Hepáticos/metabolismo , Fenilenodiaminas/síntese química , Fenilenodiaminas/química , Fenilenodiaminas/metabolismo , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 25(9): 1905-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25857941
7.
J Am Chem Soc ; 136(52): 18034-43, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25514603

RESUMO

This article reports the design, synthesis, and evaluation of a novel class of molecules of intermediate size (approximately 7000 Da), which possess both the targeting and effector functions of antibodies. These compounds­called synthetic antibody mimics targeting prostate cancer (SyAM-Ps)­bind simultaneously to prostate-specific membrane antigen and Fc gamma receptor I, thus eliciting highly selective cancer cell phagocytosis. SyAMs have the potential to combine the advantages of both small-molecule and biologic therapies, and may address many drawbacks associated with available treatments for cancer and other diseases.


Assuntos
Anticorpos/metabolismo , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Desenho de Fármacos , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Técnicas de Química Sintética , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/metabolismo , Humanos , Simulação de Acoplamento Molecular , Peso Molecular , Fagocitose/efeitos dos fármacos , Conformação Proteica , Receptores de IgG/metabolismo
8.
J Labelled Comp Radiopharm ; 57(1): 1-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24448740

RESUMO

For the first time, [3α-(3) H] 17α-hydroxy pregnenolone (1) was synthesized through a multiple step sequence. The presence of [3ß-(3) H] isomer in RP-HPLC purified product was identified by tritium NMR. The [3ß-(3) H] isomer was then separated from [3α-(3) H] 17α-hydroxy pregnenolone with chiralPAK AD-H column. [3α-(3) H] pregnenolone (2) was synthesized from commercial available 5-pregnen-3,20-dione in one step with an improved procedure.


Assuntos
17-alfa-Hidroxipregnenolona/química , 17-alfa-Hidroxipregnenolona/síntese química , Pregnenolona/química , Pregnenolona/síntese química , Técnicas de Química Sintética , Radioquímica , Estereoisomerismo , Trítio
9.
Artigo em Inglês | MEDLINE | ID: mdl-35839627

RESUMO

BMS-986205 (Linrodostat) is a small molecule inhibitor of Indoleamine 2, 3 dioxygenase (IDO) that is currently being evaluated in clinical trials for the oral treatment of advanced cancer. Initially, there were concerns regarding possible toxicity following administration, since BMS-986205 undergoes metabolism to form 4-chloroaniline. However, it was later determined that the downstream metabolites of 4-chloroaniline might be a greater concern. To evaluate the potential toxicity of these metabolites, a sensitive LC-MS/MS analytical method was needed to quantify both the parent compound and multiple metabolites. This presented a challenge since the method required the analysis of multiple analytes while still retaining the analytical sensitivity required to support studies. By utilizing a multi-function analytical method, we were able to quantify the necessary analytes using a complex LC-MS/MS-based method including the application of both negative and positive electrospray ionization.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Espectrometria de Massas em Tandem , Acetamidas , Cromatografia Líquida/métodos , Quinolinas , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
10.
Prostate ; 71(5): 480-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20878947

RESUMO

BACKGROUND: Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. METHODS: Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. RESULTS: As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. CONCLUSIONS: Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs.


Assuntos
Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/toxicidade , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacocinética , Animais , Cães , Descoberta de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias da Próstata/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Mol Cancer Ther ; 20(3): 467-476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33298590

RESUMO

Tumors can exploit the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to create an immunosuppressive microenvironment. Activated IDO1 metabolizes tryptophan into immunosuppressive kynurenine, leading to suppressed effector T-cell (Teff) proliferation, allowing for tumor escape from host immune surveillance. IDO1 inhibition counteracts this immunosuppressive tumor microenvironment and may improve cancer outcomes, particularly when combined with other immunotherapies. Linrodostat mesylate (linrodostat) is a potent, selective oral IDO1 inhibitor that occupies the heme cofactor-binding site to prevent further IDO1 activation and is currently in multiple clinical trials for treatment of patients with advanced cancers. Here, we assess the in vitro potency, in vivo pharmacodynamic (PD) activity, and preclinical pharmacokinetics (PKs) of linrodostat. Linrodostat exhibited potent cellular activity, suppressing kynurenine production in HEK293 cells overexpressing human IDO1 and HeLa cells stimulated with IFNγ, with no activity against tryptophan 2,3-dioxygenase or murine indoleamine 2,3-dioxygenase 2 detected. Linrodostat restored T-cell proliferation in a mixed-lymphocyte reaction of T cells and allogeneic IDO1-expressing dendritic cells. In vivo, linrodostat reduced kynurenine levels in human tumor xenograft models, exhibiting significant PD activity. Linrodostat demonstrated a PK/PD relationship in the xenograft model, preclinical species, and samples from patients with advanced cancers, with high oral bioavailability in preclinical species and low to moderate systemic clearance. Our data demonstrate that linrodostat potently and specifically inhibits IDO1 to block an immunosuppressive mechanism that could be responsible for tumor escape from host immune surveillance with favorable PK/PD characteristics that support clinical development.


Assuntos
Acetamidas/uso terapêutico , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Quinolinas/uso terapêutico , Acetamidas/farmacologia , Administração Oral , Animais , Cães , Feminino , Haplorrinos , Voluntários Saudáveis , Humanos , Quinolinas/farmacologia , Ratos
12.
Cell Chem Biol ; 28(10): 1528-1538.e4, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34081921

RESUMO

Proteolysis-targeting chimeras (PROTACs) represent a new direction in small-molecule therapeutics whereby a heterobifunctional linker to a protein of interest (POI) induces its ubiquitination-based proteolysis by recruiting an E3 ligase. Here, we show that charge reduction, native mass spectrometry, and gas-phase activation methods combine for an in-depth analysis of a PROTAC-linked ternary complex. Electron capture dissociation (ECD) of the intact POI-PROTAC-VCB complex (a trimeric subunit of an E3 ubiquitin ligase) promotes POI dissociation. Collision-induced dissociation (CID) causes elimination of the nonperipheral PROTAC, producing an intact VCB-POI complex not seen in solution but consistent with PROTAC-induced protein-protein interactions. In addition, we used ion mobility spectrometry (IMS) and collisional activation to identify the source of this unexpected dissociation. Together, the evidence shows that this integrated approach can be used to screen for ternary complex formation and PROTAC-protein contacts and may report on PROTAC-induced protein-protein interactions, a characteristic correlated with PROTAC selectivity and efficacy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Gases/química , Espectrometria de Mobilidade Iônica/métodos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/química , Mapas de Interação de Proteínas , Proteólise , Fatores de Transcrição/química , Ubiquitina-Proteína Ligases/química
13.
ACS Med Chem Lett ; 12(3): 494-501, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33738077

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) has been identified as a target for small-molecule immunotherapy for the treatment of a variety of cancers including renal cell carcinoma and metastatic melanoma. This work focuses on the identification of IDO1 inhibitors containing replacements or isosteres for the amide found in BMS-986205, an amide-containing, IDO1-selective inhibitor currently in phase III clinical trials. Detailed subsequently are efforts to identify a structurally differentiated IDO1 inhibitor via the pursuit of a variety of heterocyclic isosteres, leading to the discovery of highly potent, imidazopyridine-containing IDO1 inhibitors.

14.
ACS Med Chem Lett ; 12(2): 288-294, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33603977

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase enzyme implicated in cancer immune response. This account details the discovery of BMS-986242, a novel IDO1 inhibitor designed for the treatment of a variety of cancers including metastatic melanoma and renal cell carcinoma. Given the substantial interest around this target for cancer immunotherapy, we sought to identify a structurally differentiated clinical candidate that performs comparably to linrodostat (BMS-986205) in terms of both in vitro potency and in vivo pharmacodynamic effect in a mouse xenograft model. On the basis of its preclinical profile, BMS-986242 was selected as a candidate for clinical development.

15.
ACS Med Chem Lett ; 12(7): 1143-1150, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267885

RESUMO

IDO1 inhibitors have shown promise as immunotherapies for the treatment of a variety of cancers, including metastatic melanoma and renal cell carcinoma. We recently reported the identification of several novel heme-displacing IDO1 inhibitors, including the clinical molecules linrodostat (BMS-986205) and BMS-986242. Both molecules contain quinolines that, while being present in successful medicines, are known to be potentially susceptible to oxidative metabolism. Efforts to swap this quinoline with an alternative aromatic system led to the discovery of 2,3-disubstituted pyridines as suitable replacements. Further optimization, which included lowering ClogP in combination with strategic fluorine incorporation, led to the discovery of compound 29, a potent, selective IDO1 inhibitor with robust pharmacodynamic activity in a mouse xenograft model.

17.
Bioorg Med Chem Lett ; 18(6): 1910-5, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18291644

RESUMO

A novel series of [2.2.1]-oxabicyclo imide-based compounds were identified as potent antagonists of the androgen receptor. Molecular modeling and iterative drug design were applied to optimize this series. The lead compound [3aS-(3aalpha,4beta,5beta,7beta,7aalpha)]-4-(octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-iodobenzonitrile was shown to have potent in vivo efficacy after oral dosing in the CWR22 human prostate tumor xenograph model.


Assuntos
Antagonistas de Receptores de Andrógenos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Isoindóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Administração Oral , Antagonistas de Androgênios/farmacologia , Anilidas/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Cromatografia Líquida de Alta Pressão , Desenho de Fármacos , Humanos , Isoindóis/síntese química , Isoindóis/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Nitrilas/farmacologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Ligação Proteica , Receptores Androgênicos/metabolismo , Relação Estrutura-Atividade , Compostos de Tosil/farmacologia , Células Tumorais Cultivadas
18.
ACS Med Chem Lett ; 7(1): 40-5, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819663

RESUMO

Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation. Based on a favorable profile, BMS-351 was selected as a candidate for further preclinical evaluation.

19.
ACS Med Chem Lett ; 6(8): 908-12, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26288692

RESUMO

BMS-641988 (23) is a novel, nonsteroidal androgen receptor antagonist designed for the treatment of prostate cancer. The compound has high binding affinity for the AR and acts as a functional antagonist in vitro. BMS-641988 is efficacious in multiple human prostate cancer xenograft models, including CWR22-BMSLD1 where it displays superior efficacy relative to bicalutamide. Based on its promising preclinical profile, BMS-641988 was selected for clinical development.

20.
ACS Med Chem Lett ; 6(5): 523-7, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005526

RESUMO

Structure-activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa