Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMC Microbiol ; 24(1): 373, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342132

RESUMO

BACKGROUND: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. RESULTS: A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present. CONCLUSION: This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.


Assuntos
Enterobacteriaceae , Spiroplasma , Simbiose , Trypanosoma , Moscas Tsé-Tsé , Wolbachia , Animais , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Spiroplasma/isolamento & purificação , Spiroplasma/fisiologia , Spiroplasma/genética , Wolbachia/isolamento & purificação , Wolbachia/genética , Burkina Faso , Trypanosoma/isolamento & purificação , Trypanosoma/genética , Trypanosoma/fisiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Masculino , Feminino
2.
BMC Microbiol ; 23(1): 260, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716961

RESUMO

BACKGROUND: Tsetse flies are cyclical vectors of African trypanosomiasis (AT). The flies have established symbiotic associations with different bacteria that influence certain aspects of their physiology. Vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by bacterial endosymbionts amongst other factors. Symbiotic interactions may provide an avenue for AT control. The current study provided prevalence of three tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. RESULTS: Tsetse flies were collected and dissected from five different locations. DNA was extracted and polymerase chain reaction used to detect presence of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts, using species specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the three symbionts. Among infected flies, six (6.31%) had Wolbachia and Spiroplasma mixed infection. The overall symbiont prevalence was 0.88, 3.66 and 11.00% respectively, for Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts. Prevalence varied between countries and tsetse fly species. Neither Spiroplasma species nor S. glossinidius were detected in samples from Cameroon and Nigeria respectively. CONCLUSION: The present study revealed, for the first time, presence of Spiroplasma species infections in tsetse fly populations in Chad and Nigeria. These findings provide useful information on repertoire of bacterial flora of tsetse flies and incite more investigations to understand their implication in the vector competence of tsetse flies.


Assuntos
Glossinidae , Spiroplasma , Tripanossomíase Africana , Moscas Tsé-Tsé , Wolbachia , Animais , Wolbachia/genética , Camarões , Chade , Nigéria , Spiroplasma/genética
3.
BMC Pediatr ; 23(1): 538, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891551

RESUMO

BACKGROUND: This study presents the clinical pattern of presentation and survival rate of retinoblastoma, which is the most prevalent form of pediatric intraocular cancer. The aim of this study is to provide baseline information about the clinical presentation and management of retinoblastoma at ECWA Eye Hospital. Additionally, the study identifies priority areas for enhancing medical care for children diagnosed with this cancer. ECWA Eye Hospital, situated in Kano State, Nigeria, is a specialized eye center located in the North-Western region of the country. METHODS: A prospective study spanning five years was conducted at ECWA Eye Hospital to investigate clinically diagnosed cases of retinoblastoma. The study took place from January 2018 to December 2022. The patients received standardized pre-medication and chemotherapy protocols for retinoblastoma. Subsequently, a five-year follow-up was conducted to monitor the patients' progress. The collected data was analyzed, descriptive statistics were generated, and the survival rate was calculated. RESULTS: During the five-year study period, a total of 35 cases of retinoblastoma were diagnosed. The patients had an average age of 3.21 ± 1.32 years. The most common presentation patterns observed were fungating ocular mass and proptosis. Among the cases, there were 10 instances of bilateral proptosis and 25 instances of unilateral proptosis. While no patients exhibited bilateral leukocoria, eight cases of unilateral leukocoria with anterior segment seedlings were identified. The additional patterns of presentation are proptosis, leukocoria, fungating orbital mass, redness and loss of vision. The mortality rate was 80% (28 cases), while the survival rate was 20% (7 cases). Notably, all the survivors had unilateral retinoblastoma. CONCLUSION: The majority of cases observed at ECWA Eye Hospital involve advanced retinoblastoma. In low-resource settings where alternative treatment options are limited, chemotherapy is considered a viable treatment option. Early presentation of retinoblastoma in patients may lead to a higher survival rate when chemotherapy is administered.


Assuntos
Exoftalmia , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Lactente , Pré-Escolar , Retinoblastoma/tratamento farmacológico , Neoplasias da Retina/tratamento farmacológico , Estudos Prospectivos , Taxa de Sobrevida , Nigéria/epidemiologia , Enucleação Ocular , Estudos Retrospectivos
4.
Parasitol Res ; 122(12): 2751-2772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851179

RESUMO

Schistosomiasis is a neglected tropical disease caused by a parasitic, trematode blood fluke of the genus Schistosoma. With 20 million people infected, mostly due to Schistosoma haematobium, Nigeria has the highest burden of schistosomiasis in the world. We review the status of human schistosomiasis in Nigeria regarding its distribution, prevalence, diagnosis, prevention, orthodox and traditional treatments, as well as snail control strategies. Of the country's 36 states, the highest disease prevalence is found in Lagos State, but at a geo-political zonal level, the northwest is the most endemic. The predominantly used diagnostic techniques are based on microscopy. Other methods such as antibody-based serological assays and DNA detection methods are rarely employed. Possible biomarkers of disease have been identified in fecal and blood samples from patients. With respect to preventive chemotherapy, mass drug administration with praziquantel as well as individual studies with artemisinin or albendazole have been reported in 11 out of the 36 states with cure rates between 51.1 and 100%. Also, Nigerian medicinal plants have been traditionally used as anti-schistosomal agents or molluscicides, of which Tetrapleura tetraptera (Oshosho, aridan, Aidan fruit), Carica papaya (Gwanda, Ìbépe, Pawpaw), Borreria verticillata (Karya garma, Irawo-ile, African borreria), and Calliandra portoricensis (Tude, Oga, corpse awakener) are most common in the scientific literature. We conclude that the high endemicity of the disease in Nigeria is associated with the limited application of various diagnostic tools and preventive chemotherapy efforts as well as poor knowledge, attitudes, and practices (KAP). Nonetheless, the country could serve as a scientific base in the discovery of biomarkers, as well as novel plant-derived schistosomicides and molluscicides.


Assuntos
Plantas Medicinais , Esquistossomose Urinária , Esquistossomose , Animais , Humanos , Nigéria/epidemiologia , Esquistossomose/diagnóstico , Esquistossomose/tratamento farmacológico , Esquistossomose/epidemiologia , Schistosoma haematobium , Extratos Vegetais , Biomarcadores , Esquistossomose Urinária/parasitologia
5.
FASEB J ; 33(11): 13002-13013, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525300

RESUMO

African trypanosomiasis, sleeping sickness in humans or nagana in animals, is a potentially fatal neglected tropical disease and a threat to 65 million human lives and 100 million small and large livestock animals in sub-Saharan Africa. Available treatments for this devastating disease are few and have limited efficacy, prompting the search for new drug candidates. Simultaneous inhibition of the trypanosomal glycerol kinase (TGK) and trypanosomal alternative oxidase (TAO) is considered a validated strategy toward the development of new drugs. Our goal is to develop a TGK-specific inhibitor for coadministration with ascofuranone (AF), the most potent TAO inhibitor. Here, we report on the identification of novel compounds with inhibitory potency against TGK. Importantly, one of these compounds (compound 17) and its derivatives (17a and 17b) killed trypanosomes even in the absence of AF. Inhibition kinetics revealed that derivative 17b is a mixed-type and competitive inhibitor for TGK and TAO, respectively. Structural data revealed the molecular basis of this dual inhibitory action, which, in our opinion, will aid in the successful development of a promising drug to treat trypanosomiasis. Although the EC50 of compound 17b against trypanosome cells was 1.77 µM, it had no effect on cultured human cells, even at 50 µM.-Balogun, E. O., Inaoka, D. K., Shiba, T., Tsuge, C., May, B., Sato, T., Kido, Y., Nara, T., Aoki, T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Michels, P. A. M., Watanabe, Y.-I., Moore, A. L., Harada, S., Kita, K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei.


Assuntos
Cumarínicos/farmacologia , Descoberta de Drogas , Glicerol Quinase/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Proteínas de Plantas/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Cumarínicos/química , Glicerol Quinase/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Trypanosoma brucei brucei/enzimologia
6.
Malar J ; 19(1): 439, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256739

RESUMO

BACKGROUND: The analysis of single nucleotide polymorphism (SNPs) in drug-resistance associated genes is a commonly used strategy for the surveillance of anti-malarial drug resistance in populations of parasites. The present study was designed and performed to provide genetic epidemiological data of the prevalence of N86Y-Y184F-D1246Y SNPs in Plasmodium falciparum multidrug resistance 1 (pfmdr1) in the malaria hotspot of Northern Nigeria. METHODS: Plasmodium falciparum-positive blood samples on Whatman-3MM filter papers were collected from 750 symptomatic patients from four states (Kano, Kaduna, Yobe and Adamawa) in Northern Nigeria, and genotyped via BigDye (v3.1) terminator cycle sequencing for the presence of three SNPs in pfmdr1. SNPs in pfmdr1 were used to construct NYD, NYY, NFY, NFD, YYY, YYD, YFD and YFY haplotypes, and all data were analysed using Pearson Chi square and Fisher's exact (FE) tests. RESULTS: The prevalence of the pfmdr1 86Y allele was highest in Kaduna (12.50%, 2 = 10.50, P = 0.02), whilst the 184F allele was highest in Kano (73.10%, 2 = 13.20, P = 0.00), and the pfmdr1 1246Y allele was highest in Yobe (5.26%, 2 = 9.20, P = 0.03). The NFD haplotype had the highest prevalence of 69.81% in Kano (2 = 36.10, P = 0.00), followed by NYD with a prevalence of 49.00% in Adamawa, then YFD with prevalence of 11.46% in Kaduna. The YYY haplotype was not observed in any of the studied states. CONCLUSION: The present study suggests that strains of P. falciparum with reduced sensitivity to the lumefantrine component of AL exist in Northern Nigeria and predominate in the North-West region.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Resistência a Múltiplos Medicamentos/genética , Genes MDR , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Nigéria
7.
Biochim Biophys Acta Bioenerg ; 1859(3): 191-200, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29269266

RESUMO

Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.


Assuntos
Membranas Mitocondriais/enzimologia , Oxirredutases/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Antimaláricos/farmacologia , Atovaquona/farmacologia , Biocatálise/efeitos dos fármacos , Cumarínicos/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malatos/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Ácido Oxaloacético/metabolismo , Oxirredutases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores
8.
Protein Expr Purif ; 138: 56-62, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28642005

RESUMO

Isocitrate dehydrogenases (IDHs) are metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate. Depending on the electron acceptor and subcellular localization, these enzymes are classified as NADP+-dependent IDH1 in the cytosol or peroxisomes, NADP+-dependent IDH2 and NAD+-dependent IDH3 in mitochondria. Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness in humans and Nagana disease in animals. Here, for the first time, a putative glycosomal T. brucei type 1 IDH (TbIDH1) was expressed in Escherichia coli and purified for crystallographic study. Surprisingly, the putative NADP+-dependent TbIDH1 has higher activity with NAD+ compared with NADP+ as electron acceptor, a unique characteristic among known eukaryotic IDHs which encouraged us to crystallize TbIDH1 for future biochemical and structural studies. Methods of expression and purification of large amounts of recombinant TbIDH1 with improved solubility to facilitate protein crystallization are presented.


Assuntos
Isocitrato Desidrogenase/genética , NADP/metabolismo , NAD/metabolismo , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Trypanosoma brucei brucei/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isocitrato Desidrogenase/isolamento & purificação , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Peso Molecular , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Trypanosoma brucei brucei/enzimologia
9.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2830-2842, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28778484

RESUMO

BACKGROUND: In general, glycerol kinases (GKs) are transferases that catalyze phospho group transfer from ATP to glycerol, and the mechanism was suggested to be random bi-bi. The reverse reaction i.e. phospho transfer from glycerol 3-phosphate (G3P) to ADP is only physiologically feasible by the African trypanosome GK. In contrast to other GKs the mechanism of Trypanosoma brucei gambiense glycerol kinase (TbgGK) was shown to be in an ordered fashion, and proceeding via autophosphorylation. From the unique reaction mechanism of TbgGK, we envisaged its potential to possess phosphatase activity in addition to being a kinase. METHODS: Our hypothesis was tested by spectrophotometric and LC-MS/MS analyses using paranitrophenyl phosphate (pNPP) and TbgGK's natural substrate, G3P respectively. Furthermore, protein X-ray crystallography and site-directed mutagenesis were performed to examine pNPP binding, catalytic residues, and the possible reaction mechanism. RESULTS: In addition to its widely known and expected phosphotransferase (class II) activity, TbgGK can efficiently facilitate the hydrolytic cleavage of phosphoric anhydride bonds (a class III property). This phosphatase activity followed the classical Michaelis-Menten pattern and was competitively inhibited by ADP and G3P, suggesting a common catalytic site for both activities (phosphatase and kinase). The structure of the TGK-pNPP complex, and structure-guided mutagenesis implicated T276 to be important for the catalysis. Remarkably, we captured a crystallographic molecular snapshot of the phosphorylated T276 reaction intermediate. CONCLUSION: We conclude that TbgGK has both kinase and phosphatase activities. GENERAL SIGNIFICANCE: This is the first report on a bifunctional kinase/phosphatase enzyme among members of the sugar kinase family.


Assuntos
Glicerol Quinase/química , Monoéster Fosfórico Hidrolases/química , Conformação Proteica , Trypanosoma brucei gambiense/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Glicerol/metabolismo , Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Glicerofosfatos/metabolismo , Humanos , Nitrobenzenos/química , Monoéster Fosfórico Hidrolases/metabolismo , Especificidade por Substrato , Trypanosoma brucei gambiense/patogenicidade
10.
Bioorg Med Chem ; 25(4): 1465-1470, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28118956

RESUMO

Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, is the leading cause of heart disease in Latin America. T. cruzi dihydroorotate dehydrogenase (DHODH), which catalyzes the production of orotate, was demonstrated to be essential for T. cruzi survival, and thus has been considered as a potential drug target to combat Chagas disease. Here we report the design and synthesis of 75 compounds based on the orotate structure. A comprehensive structure-activity relationship (SAR) study revealed two 5-substituted orotate analogues (5u and 5v) that exhibit Kiapp values of several ten nanomolar level and a selectivity of more than 30,000-fold over human DHODH. The information presented here will be invaluable in the search for next-generation drug leads for Chagas disease.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ácido Orótico/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Di-Hidro-Orotato Desidrogenase , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Ácido Orótico/síntese química , Ácido Orótico/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Relação Estrutura-Atividade , Trypanosoma cruzi/enzimologia
11.
Proc Natl Acad Sci U S A ; 110(12): 4580-5, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487766

RESUMO

In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.


Assuntos
Cianetos/química , Resistência a Medicamentos , Proteínas Mitocondriais/química , Oxirredutases/química , Proteínas de Plantas/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Humanos , Oxirredução , Oxigênio/química , Estrutura Secundária de Proteína
12.
Mol Microbiol ; 94(6): 1315-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25315291

RESUMO

The glycerol kinase (GK) of African human trypanosomes is compartmentalized in their glycosomes. Unlike the host GK, which under physiological conditions catalyzes only the forward reaction (ATP-dependent glycerol phosphorylation), trypanosome GK can additionally catalyze the reverse reaction. In fact, owing to this unique reverse catalysis, GK is potentially essential for the parasites survival in the human host, hence a promising drug target. The mechanism of its reverse catalysis was unknown; therefore, it was not clear if this ability was purely due to its localization in the organelles or whether structure-based catalytic differences also contribute. To investigate this lack of information, the X-ray crystal structure of this protein was determined up to 1.90 Å resolution, in its unligated form and in complex with three natural ligands. These data, in conjunction with results from structure-guided mutagenesis suggests that the trypanosome GK is possibly a transiently autophosphorylating threonine kinase, with the catalytic site formed by non-conserved residues. Our results provide a series of structural peculiarities of this enzyme, and gives unexpected insight into the reverse catalysis mechanism. Together, they provide an encouraging molecular framework for the development of trypanosome GK-specific inhibitors, which may lead to the design of new and safer trypanocidal drug(s).


Assuntos
Glicerol Quinase/química , Glicerol Quinase/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma brucei gambiense/enzimologia , Difosfato de Adenosina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicerol , Glicerol Quinase/genética , Humanos , Modelos Moleculares , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Trypanosoma brucei gambiense/química , Tripanossomíase Africana/parasitologia
13.
Int J Mol Sci ; 16(7): 15287-308, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26198225

RESUMO

Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 µM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 µM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.


Assuntos
Anilidas/química , Anilidas/farmacologia , Fumaratos/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Parasitos/metabolismo , Animais , Ascaris suum/efeitos dos fármacos , Ascaris suum/enzimologia , Benzoquinonas/metabolismo , Sítios de Ligação , Respiração Celular/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Oxirredutases/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Ácido Succínico/metabolismo , Sus scrofa
14.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716192

RESUMO

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Proteínas dos Microfilamentos , Plasmodium falciparum , Adulto , Feminino , Humanos , Masculino , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Combinação de Medicamentos , Resistência a Medicamentos/genética , Genótipo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas dos Microfilamentos/genética , Repetições de Microssatélites/genética , Mutação , Nigéria , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo Genético , Proteínas de Protozoários/genética , Recidiva
15.
Res Sq ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39257987

RESUMO

Background: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. Results: A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened byPCR for the presence of Sodalis glossinidius, Spiroplasmasp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambienseand 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius(54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia(43.4%, 38.5%, 38.6%, 70.8%),respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachhnoideswas infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0 %) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G.p. gambiense, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported1.9 times likelihood of trypanosome absence when Wolbachia was present. Conclusion: This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.

16.
Pathogens ; 13(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39452722

RESUMO

Human schistosomiasis, caused by the Schistosoma trematode, is a neglected parasitic disease affecting over 250 million people worldwide. There is no vaccine, and the single available drug is threatened by drug resistance. This study presents a computational approach to designing multiepitope vaccines (MEVs) targeting the cercarial (CMEV) and schistosomular (SMEV) stages of schistosomes, and identifies potential schistosomicidal compounds from the Medicine for Malaria Ventures (MMV) and SuperNatural Database (SND) libraries. The designed vaccines (CMEV and SMEV) are engineered to provoke robust immune responses by incorporating a blend of T- and B-cell epitopes. Structural and immunoinformatics evaluations predicted robust interactions of CMEV and SMEV with key immune receptors and prolonged immune responses. In addition, molecular docking identified several compounds from the MMV and SND libraries with strong binding affinities to vital Schistosoma cathepsin proteases, indicating their potential as schistosomicidal agents. Our findings contribute to the potential development of effective vaccines and drugs against schistosomiasis.

17.
J Ophthalmol ; 2024: 2562064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39041004

RESUMO

Background: Phacoemulsification has proven to be a breakthrough technique in cataract surgery. Its popularity has grown dramatically as procedures and equipment have advanced, improving both safety and efficiency. This study presents long-term outcomes from phacoemulsification surgeries performed at the Evangelical Church Winning All (ECWA) Eye Hospital, a tertiary eye care center. Method: This prospective clinical cohort study followed standard practices for operations performed under local anesthesia. Ophthalmologists evaluated long-term outcomes and predictors of improved visual acuity after phacoemulsification cataract surgery. The visual recovery of the patients over time was evaluated, and the factors that influence the gains in vision were identified. Results: A total of 177 patients were subjected to treatment at our facilities during the study period. There were 116 male and 61 female patients, which resulted to a male-to-female ratio of 1 : 0.53. The average age of the patients was 59.18 years with a standard deviation of 11.38 years. Of the 259 eyes treated, 249 eyes (96.1%) achieved a high success rate with visual acuity of 6/6 - 6/18. Ten (10) eyes (3.9%) had moderate acuity between <6/18 and 6/60. Follow-up examinations over five years after phacoemulsification showed poor vision outcomes among old patients. The primary factor that affected improvement in visual acuity among patients was amblyopia, present in 30% of cases. Posterior capsular opacification and macular edema collectively accounted for 20% of poor vision cases, while optic atrophy, glaucoma, and retinal hemorrhage each represented approximately 10% of poor vision cases. Conclusions: The phacoemulsification approach demonstrated a highly effective restoration of vision for the vast majority, while long-term data analysis indicated the potential for age-related variability in postoperative visual gains.

18.
Ann Afr Med ; 23(3): 379-384, 2024 Jul 01.
Artigo em Francês, Inglês | MEDLINE | ID: mdl-39034562

RESUMO

BACKGROUND: Understanding the impact of malnutrition on innate immune response in Plasmodium falciparum (Pf)-infected subjects is critical for malaria control. AIMS AND OBJECTIVES: This study aims to investigate the nutritional status and innate immune response of Pf-infected subjects in Lagos, Nigeria. MATERIALS AND METHODS: A total of 1183 patients with a history of fever or axillary temperature ≥37°C were screened microscopically for Pf at Ijede General Hospital, Lagos, Nigeria. Malnutrition was determined according to the U.S National Center for Health Statistics (NCHS) as stunting, wasting, or underweight when the Z-score is <-2 in the participants aged <20 years. Serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and IL-12 were determined by capture ELISA while hematological parameters were measured using an automated hematology system. RESULTS: A total of 384 volunteers were positive for Pf, of which 114 were <20 years with a median age of 10 years. Overall malaria prevalence was 20.89%. The malnutrition rate was 89.5%; 24 (21.05%) were stunted, 30 (26.32%) were underweight, and 48 (42.11%) were wasted. Pro-inflammatory cytokine responses were not affected by the type of malaria. TNF-α was higher in participants <5 years (P = 0.001) and in malnourished patients (P < 0.05). CONCLUSION: Together, it could be deduced that nutritional status influences Plasmodium falciparum malaria outcomes and progression pattern.


Résumé Contexte:Comprendre l'impact de la malnutrition sur la réponse immunitaire innée chez les sujets infectés par Plasmodium falciparum (Pf) est essentiel pour la lutte contre le paludisme.Buts et objectifs:Cette étude vise à étudier l'état nutritionnel et la réponse immunitaire innée des sujets infectés par Pf à Lagos, au Nigeria.Matériels et méthodes:Un total de 1183 patients ayant des antécédents de fièvre ou une température axillaire ≥37°C ont fait l'objet d'un dépistage microscopique de Pf à l'hôpital général Ijede, Lagos, Nigeria. La malnutrition a été déterminée selon le National Center for Health Statistics (NCHS) des États-Unis comme un retard de croissance, une émaciation ou une insuffisance pondérale lorsque le score Z est <-2 chez les participants âgés de moins de 20 ans. Les taux sériques de facteur de nécrose tumorale alpha (TNF-α), d'interleukine-1ß (IL-1ß) et d'IL-12 ont été déterminés par capture ELISA, tandis que les paramètres hématologiques ont été mesurés à l'aide d'un système d'hématologie automatisé.Résultats:Au total, 384 volontaires étaient positifs pour le Pf, dont 114 étaient âgés de moins de 20 ans avec un âge médian de 10 ans. La prévalence globale du paludisme était de 20,89 %. Le taux de malnutrition était de 89,5 %; 24 (21,05 %) souffraient d'un retard de croissance, 30 (26,32 %) d'une insuffisance pondérale et 48 (42,11 %) d'émaciation. Les réponses des cytokines pro-inflammatoires n'ont pas été affectées par le type de paludisme. Le TNF-α était plus élevé chez les participants de moins de 5 ans ( P = 0,001) et chez les patients souffrant de malnutrition ( P < 0,05).Conclusion:On peut en déduire que l'état nutritionnel peut influencer les résultats et le schéma de progression du paludisme.


Assuntos
Citocinas , Malária Falciparum , Desnutrição , Estado Nutricional , Plasmodium falciparum , Fator de Necrose Tumoral alfa , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/sangue , Malária Falciparum/imunologia , Malária Falciparum/complicações , Nigéria/epidemiologia , Masculino , Feminino , Desnutrição/epidemiologia , Desnutrição/sangue , Criança , Adolescente , Pré-Escolar , Adulto , Adulto Jovem , Fator de Necrose Tumoral alfa/sangue , Citocinas/sangue , Prevalência , Interleucina-1beta/sangue , Estudos Transversais , Lactente , Ensaio de Imunoadsorção Enzimática , Pessoa de Meia-Idade , Interleucina-12/sangue , Imunidade Inata
19.
Sci Rep ; 13(1): 14596, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669981

RESUMO

Amebiasis is caused by the protozoan parasite Entamoeba histolytica. Treatment options other than metronidazole and its derivatives are few, and their low efficacy against asymptomatic cyst carriers, and experimental evidence of resistance in vitro justify the discovery/repurposing campaign for new drugs against amebiasis. Global metabolic responses to oxidative stress and cysteine deprivation by E. histolytica revealed glycerol metabolism may represent a rational target for drug development. In this study using 14C-labelled glucose, only 11% of the total glucose taken up by E. histolytica trophozoites is incorporated to lipids. To better understand the role of glycerol metabolism in this parasite, we focused on characterizing two important enzymes, glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (G3PDH). Recombinant GK was biochemically characterized in detail, while G3PDH was not due to failure of protein expression and purification. GK revealed novel characteristics and unprecedented kinetic properties in reverse reaction. Gene silencing revealed that GK is essential for optimum growth, whereas G3PDH is not. Gene silencing of G3PDH caused upregulated GK expression, while that of GK resulted in upregulation of antioxidant enzymes as shown by RNA-seq analysis. Although the precise molecular link between GK and the upregulation of antioxidant enzymes was not demonstrated, the observed increase in antioxidant enzyme expression upon GK gene silencing suggests a potential connection between GK and the cellular response to oxidative stress. Together, these results provide the first direct evidence of the biological importance and coordinated regulation of the glycerol metabolic pathways for proliferation and antioxidative defense in E. histolytica, justifying the exploitation of these enzymes as future drug targets.


Assuntos
Amebíase , Entamoeba histolytica , Parasitos , Humanos , Animais , Antioxidantes , Vias Biossintéticas , Glicerol , Glicerol Quinase , Proliferação de Células
20.
J Biomol Struct Dyn ; 41(1): 45-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34812693

RESUMO

African trypanosomiasis is caused by Trypanosoma brucei subspecies and available drugs against it, are unsatisfactory due to poor pharmacokinetic properties. Trypanosomal Alternative Oxidase (TAO) is an attractive target for anti-trypanosome rational drug discovery because it is essential for parasite-specific ATP generation and absent in the mammalian host. In this study, 360 filtered ligands from the Universal Natural Product Database were virtually screened and docked on T. brucei brucei TAO (PDB-ID 3VVA). From the virtual screening, 10 ligands with binding energy from -10.6 to -9.0 kcal/mol were selected as hits and further subjected pharmacokinetic and toxicity analyses where all of them passed Lipinski's rule of five. Also, the compounds were non-mutagenic, non-tumorigenic and could cross the blood brain barrier. The two topmost hits (UNPD29179; megacerotonic acid and UNPD41551; a quinazoline derivative) interacted with `four glutamates (Glu123, Glu162, Glu213 and Glu266) close to di-iron (2 iron elements) at the catalytic site of the enzyme. Subsequently, 100 ns MD simulations of the two topmost hits were performed using GROMACS where high RMSD values of 0.75 nm (TAO-UNPD29179) and 0.52 nm (TAO- UNPD41551), low residues fluctuations and consistent values of radius of gyration were observed. Moreover, Solvent Accessible Surface Area showed a consistent value of 160 nm2 for both complexes while TAO-UNPD29179 had higher number of hydrogen bonds than the TAO-UNPD41551. Similarly, MM/PBSA calculations indicated that UNPD29179 had higher free binding energy with TAO than UNPD41551. The data suggest that megacerotonic acid and a quinazoline derivative could be potential inhibitors of TAO with improved pharmacokinetic properties.Communicated by Ramaswamy H. Sarma.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Trypanosoma brucei brucei/metabolismo , Simulação de Acoplamento Molecular , Tripanossomíase Africana/tratamento farmacológico , Simulação de Dinâmica Molecular , Mamíferos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa