Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 15, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287415

RESUMO

BACKGROUND: Computerized posturography obtained in standing conditions has been applied to classify fall risk for older adults or disease groups. Combining machine learning (ML) approaches is superior to traditional regression analysis for its ability to handle complex data regarding its characteristics of being high-dimensional, non-linear, and highly correlated. The study goal was to use ML algorithms to classify fall risks in community-dwelling older adults with the aid of an explainable artificial intelligence (XAI) approach to increase interpretability. METHODS: A total of 215 participants were included for analysis. The input information included personal metrics and posturographic parameters obtained from a tracker-based posturography of four standing postures. Two classification criteria were used: with a previous history of falls and the timed-up-and-go (TUG) test. We used three meta-heuristic methods for feature selection to handle the large numbers of parameters and improve efficacy, and the SHapley Additive exPlanations (SHAP) method was used to display the weights of the selected features on the model. RESULTS: The results showed that posturographic parameters could classify the participants with TUG scores higher or lower than 10 s but were less effective in classifying fall risk according to previous fall history. Feature selections improved the accuracy with the TUG as the classification label, and the Slime Mould Algorithm had the best performance (accuracy: 0.72 to 0.77, area under the curve: 0.80 to 0.90). In contrast, feature selection did not improve the model performance significantly with the previous fall history as a classification label. The SHAP values also helped to display the importance of different features in the model. CONCLUSION: Posturographic parameters in standing can be used to classify fall risks with high accuracy based on the TUG scores in community-dwelling older adults. Using feature selection improves the model's performance. The results highlight the potential utility of ML algorithms and XAI to provide guidance for developing more robust and accurate fall classification models. Trial registration Not applicable.


Assuntos
Inteligência Artificial , Vida Independente , Humanos , Idoso , Modalidades de Fisioterapia , Aprendizado de Máquina
2.
Ecotoxicol Environ Saf ; 266: 115572, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37837695

RESUMO

With urbanization and increasing consumption, there is a growing need to prioritize sustainable development across various industries. Particularly, sustainable development is hindered by air pollution, which poses a threat to both living organisms and the environment. The emission of combustion gases containing particulate matter (PM 2.5) during human and social activities is a major cause of air pollution. To mitigate health risks, it is crucial to have accurate and reliable methods for forecasting PM 2.5 levels. In this study, we propose a novel approach that combines support vector machine (SVM) and long short-term memory (LSTM) with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to forecast PM 2.5 concentrations. The methodology involves extracting Intrinsic mode function (IMF) components through CEEMDAN and subsequently applying different regression models (SVM and LSTM) to forecast each component. The Naive Evolution algorithm is employed to determine the optimal parameters for combining CEEMDAN, SVM, and LSTM. Daily PM 2.5 concentrations in Kaohsiung, Taiwan from 2019 to 2021 were collected to train models and evaluate their performance. The performance of the proposed model is evaluated using metrics such as mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and coefficient of determination (R2) for each district. Overall, our proposed model demonstrates superior performance in terms of MAE (1.858), MSE (7.2449), RMSE (2.6682), and (0.9169) values compared to other methods for 1-day ahead PM 2.5 forecasting. Furthermore, our proposed model also achieves the best performance in forecasting PM 2.5 for 3- and 7-day ahead predictions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Máquina de Vetores de Suporte , Material Particulado/análise , Poluição do Ar/análise , Algoritmos , Previsões
3.
Cluster Comput ; : 1-41, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996680

RESUMO

Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare field. Traditionally, the healthcare system works based on centralized agents sharing their raw data. Therefore, huge vulnerabilities and challenges are still existing in this system. However, integrating with AI, the system would be multiple agent collaborators who are capable of communicating with their desired host efficiently. Again, FL is another interesting feature, which works decentralized manner; it maintains the communication based on a model in the preferred system without transferring the raw data. The combination of FL, AI, and XAI techniques can be capable of minimizing several limitations and challenges in the healthcare system. This paper presents a complete analysis of FL using AI for smart healthcare applications. Initially, we discuss contemporary concepts of emerging technologies such as FL, AI, XAI, and the healthcare system. We integrate and classify the FL-AI with healthcare technologies in different domains. Further, we address the existing problems, including security, privacy, stability, and reliability in the healthcare field. In addition, we guide the readers to solving strategies of healthcare using FL and AI. Finally, we address extensive research areas as well as future potential prospects regarding FL-based AI research in the healthcare management system.

4.
Cluster Comput ; 25(4): 2351-2368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34341656

RESUMO

The industrial ecosystem has been unprecedentedly affected by the COVID-19 pandemic because of its immense contact restrictions. Therefore, the manufacturing and socio-economic operations that require human involvement have significantly intervened since the beginning of the outbreak. As experienced, the social-distancing lesson in the potential new-normal world seems to force stakeholders to encourage the deployment of contactless Industry 4.0 architecture. Thus, human-less or less-human operations to keep these IoT-enabled ecosystems running without interruptions have motivated us to design and demonstrate an intelligent automated framework. In this research, we have proposed "EdgeSDN-I4COVID" architecture for intelligent and efficient management during COVID-19 of the smart industry considering the IoT networks. Moreover, the article presents the SDN-enabled layer, such as data, control, and application, to effectively and automatically monitor the IoT data from a remote location. In addition, the proposed convergence between SDN and NFV provides an efficient control mechanism for managing the IoT sensor data. Besides, it offers robust data integration on the surface and the devices required for Industry 4.0 during the COVID-19 pandemic. Finally, the article justified the above contributions through particular performance evaluations upon appropriate simulation setup and environment.

5.
Sensors (Basel) ; 20(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008132

RESUMO

This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70%) and testing (30%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.

6.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053663

RESUMO

Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer.

7.
Entropy (Basel) ; 22(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33287007

RESUMO

Predicting stock market (SM) trends is an issue of great interest among researchers, investors and traders since the successful prediction of SMs' direction may promise various benefits. Because of the fairly nonlinear nature of the historical data, accurate estimation of the SM direction is a rather challenging issue. The aim of this study is to present a novel machine learning (ML) model to forecast the movement of the Borsa Istanbul (BIST) 100 index. Modeling was performed by multilayer perceptron-genetic algorithms (MLP-GA) and multilayer perceptron-particle swarm optimization (MLP-PSO) in two scenarios considering Tanh (x) and the default Gaussian function as the output function. The historical financial time series data utilized in this research is from 1996 to 2020, consisting of nine technical indicators. Results are assessed using Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and correlation coefficient values to compare the accuracy and performance of the developed models. Based on the results, the involvement of the Tanh (x) as the output function, improved the accuracy of models compared with the default Gaussian function, significantly. MLP-PSO with population size 125, followed by MLP-GA with population size 50, provided higher accuracy for testing, reporting RMSE of 0.732583 and 0.733063, MAPE of 28.16%, 29.09% and correlation coefficient of 0.694 and 0.695, respectively. According to the results, using the hybrid ML method could successfully improve the prediction accuracy.

8.
Entropy (Basel) ; 22(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33286810

RESUMO

In this study, a new approach to basis of intelligent systems and machine learning algorithms is introduced for solving singular multi-pantograph differential equations (SMDEs). For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated solution. The rules of the suggested type-2 fuzzy logic system (T2-FLS) are optimized by the square root cubature Kalman filter (SCKF) such that the proposed fineness function to be minimized. Furthermore, the stability and boundedness of the estimation error is proved by novel approach on basis of Lyapunov theorem. The accuracy and robustness of the suggested algorithm is verified by several statistical examinations. It is shown that the suggested method results in an accurate solution with rapid convergence and a lower computational cost.

9.
AIMS Public Health ; 11(1): 58-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617415

RESUMO

In recent years, machine learning (ML) and deep learning (DL) have been the leading approaches to solving various challenges, such as disease predictions, drug discovery, medical image analysis, etc., in intelligent healthcare applications. Further, given the current progress in the fields of ML and DL, there exists the promising potential for both to provide support in the realm of healthcare. This study offered an exhaustive survey on ML and DL for the healthcare system, concentrating on vital state of the art features, integration benefits, applications, prospects and future guidelines. To conduct the research, we found the most prominent journal and conference databases using distinct keywords to discover scholarly consequences. First, we furnished the most current along with cutting-edge progress in ML-DL-based analysis in smart healthcare in a compendious manner. Next, we integrated the advancement of various services for ML and DL, including ML-healthcare, DL-healthcare, and ML-DL-healthcare. We then offered ML and DL-based applications in the healthcare industry. Eventually, we emphasized the research disputes and recommendations for further studies based on our observations.

10.
ACS Omega ; 8(31): 28036-28051, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576653

RESUMO

In powder metallurgy materials, sintered density in Cu-Al alloy plays a critical role in detecting mechanical properties. Experimental measurement of this property is costly and time-consuming. In this study, adaptive boosting decision tree, support vector regression, k-nearest neighbors, extreme gradient boosting, and four multilayer perceptron (MLP) models tuned by resilient backpropagation, Levenberg-Marquardt (LM), scaled conjugate gradient, and Bayesian regularization were employed for predicting powder densification through sintering. Yield strength, Young's modulus, volume variation caused by the phase transformation, hardness, liquid volume, liquidus temperature, the solubility ratio among the liquid phase and the solid phase, sintered temperature, solidus temperature, sintered atmosphere, holding time, compaction pressure, particle size, and specific shape factor were regarded as the input parameters of the suggested models. The cross plot, error distribution curve, and cumulative frequency diagram as graphical tools and average percent relative error (APRE), average absolute percent relative error (AAPRE), root mean square error (RMSE), standard deviation (SD), and coefficient of correlation (R) as the statistical evaluations were utilized to estimate the models' accuracy. All of the developed models were compared with preexisting approaches, and the results exhibited that the developed models in the present work are more precise and valid than the existing ones. The designed MLP-LM model was found to be the most precise approach with AAPRE = 1.292%, APRE = -0.032%, SD = 0.020, RMSE = 0.016, and R = 0.989. Lately, outlier detection was applied performing the leverage technique to detect the suspected data points. The outlier detection discovered that few points are located out of the applicability domain of the proposed MLP-LM model.

11.
Big Data ; 11(5): 339-354, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35076283

RESUMO

The cloud network is rapidly growing due to a massive increase in interconnected devices and the emergence of different technologies such as the Internet of things, fog computing, and artificial intelligence. In response, cloud computing needs reliable dealings among the service providers, brokers, and consumers. The existing cloud monitoring frameworks such as Amazon Cloud Watch, Paraleap Azure Watch, and Rack Space Cloud Kick work under the control of service providers. They work fine; however, this may create dissatisfaction among customers over Service Level Agreement (SLA) violations. Customers' dissatisfaction may drastically reduce the businesses of service providers. To cope with the earlier mentioned issue and get in line with cloud philosophy, Monitoring as a Service (MaaS), completely independent in nature, is needed for observing and regulating the cloud businesses. However, the existing MaaS frameworks do not address the comprehensive SLA for customer satisfaction and penalties management. This article proposes a reliable framework for monitoring the provider's services by adopting third-party monitoring services with clearcut SLA and penalties management. Since this framework monitors SLA as a cloud monitoring service, it is named as SLA-MaaS. On violations, it penalizes those who are found in breach of terms and condition enlisted in SLA. Simulation results confirmed that the proposed framework adequately satisfies the customers (as well as service providers). This helps in developing a trustworthy relationship among cloud partners and increases customer attention and retention.


Assuntos
Inteligência Artificial , Computação em Nuvem , Simulação por Computador , Internet , Comércio
12.
Front Artif Intell ; 6: 1181812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251274

RESUMO

Precise detection and localization of the Endotracheal tube (ETT) is essential for patients receiving chest radiographs. A robust deep learning model based on U-Net++ architecture is presented for accurate segmentation and localization of the ETT. Different types of loss functions related to distribution and region-based loss functions are evaluated in this paper. Then, various integrations of distribution and region-based loss functions (compound loss function) have been applied to obtain the best intersection over union (IOU) for ETT segmentation. The main purpose of the presented study is to maximize IOU for ETT segmentation, and also minimize the error range that needs to be considered during calculation of distance between the real and predicted ETT by obtaining the best integration of the distribution and region loss functions (compound loss function) for training the U-Net++ model. We analyzed the performance of our model using chest radiograph from the Dalin Tzu Chi Hospital in Taiwan. The results of applying the integration of distribution-based and region-based loss functions on the Dalin Tzu Chi Hospital dataset show enhanced segmentation performance compared to other single loss functions. Moreover, according to the obtained results, the combination of Matthews Correlation Coefficient (MCC) and Tversky loss functions, which is a hybrid loss function, has shown the best performance on ETT segmentation based on its ground truth with an IOU value of 0.8683.

13.
ACS Omega ; 7(14): 11578-11586, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449927

RESUMO

Identifying the number of oil families in petroleum basins provides practical and valuable information in petroleum geochemistry studies from exploration to development. Oil family grouping helps us track migration pathways, identify the number of active source rock(s), and examine the reservoir continuity. To date, almost in all oil family typing studies, common statistical methods such as principal component analysis (PCA) and hierarchical clustering analysis (HCA) have been used. However, there is no publication regarding using artificial neural networks (ANNs) for examining the oil families in petroleum basins. Hence, oil family typing requires novel and not overused and common techniques. This paper is the first report of oil family typing using ANNs as robust computational methods. To this end, a self-organization map (SOM) neural network associated with three clustering validity indexes was employed on oil samples belonging to the Iranian part of the Persian Gulf oilfields. For the SOM network, at first, 10 default clusters were selected. Afterward, three effective clustering validity coefficients, namely, Calinski-Harabasz (CH), Silhouette (SH), and Davies-Bouldin (DB), were studied to find the optimum number of clusters. Accordingly, among 10 default clusters, the maximum CH (62) and SH (0.58) were acquired for 4 clusters. Similarly, the lowest DB (0.8) was obtained for four clusters. Thus, all three validation coefficients introduced four clusters as the optimum number of clusters or oil families. According to the geochemical parameters, it can be deduced that the corresponding source rocks of four oil families have been deposited in a marine carbonate depositional environment under dysoxic-anoxic conditions. However, oil families show some differences based on geochemical data. The number of oil families identified in the present report is consistent with those previously reported by other researchers in the same study area. However, the techniques used in the present paper, which have not been implemented so far, can be introduced as more straightforward for clustering purposes in oil family typing than those of common and overused methods of PCA and HCA.

14.
Front Public Health ; 10: 894920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795700

RESUMO

Detection of malignant lung nodules from Computed Tomography (CT) images is a significant task for radiologists. But, it is time-consuming in nature. Despite numerous breakthroughs in studies on the application of deep learning models for the identification of lung cancer, researchers and doctors still face challenges when trying to deploy the model in clinical settings to achieve improved accuracy and sensitivity on huge datasets. In most situations, deep convolutional neural networks are used for detecting the region of the main nodule of the lung exclusive of considering the neighboring tissues of the nodule. Although the accuracy achieved through CNN is good enough but this models performance degrades when there are variations in image characteristics like: rotation, tiling, and other abnormal image orientations. CNN does not store relative spatial relationships among features in scanned images. As CT scans have high spatial resolution and are sensitive to misalignments during the scanning process, there is a requirement of a technique which helps in considering spatial information of image features also. In this paper, a hybrid model named VCNet is proposed by combining the features of VGG-16 and capsule network (CapsNet). VGG-16 model is used for object recognition and classification. CapsNet is used to address the shortcomings of convolutional neural networks for image rotation, tiling, and other abnormal image orientations. The performance of VCNeT is verified on the Lung Image Database Consortium (LIDC) image collection dataset. It achieves higher testing accuracy of 99.49% which is significantly better than MobileNet, Xception, and VGG-16 that has achieved an accuracy of 98, 97.97, and 96.95%, respectively. Therefore, the proposed hybrid VCNet framework can be used for the clinical purpose for nodule detection in lung carcinoma detection.


Assuntos
Carcinoma , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X
15.
Sci Rep ; 12(1): 6991, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484318

RESUMO

Emotion recognition is defined as identifying human emotion and is directly related to different fields such as human-computer interfaces, human emotional processing, irrational analysis, medical diagnostics, data-driven animation, human-robot communication, and many more. This paper proposes a new facial emotional recognition model using a convolutional neural network. Our proposed model, "ConvNet", detects seven specific emotions from image data including anger, disgust, fear, happiness, neutrality, sadness, and surprise. The features extracted by the Local Binary Pattern (LBP), region based Oriented FAST and rotated BRIEF (ORB) and Convolutional Neural network (CNN) from facial expressions images were fused to develop the classification model through training by our proposed CNN model (ConvNet). Our method can converge quickly and achieves good performance which the authors can develop a real-time schema that can easily fit the model and sense emotions. Furthermore, this study focuses on the mental or emotional stuff of a man or woman using the behavioral aspects. To complete the training of the CNN network model, we use the FER2013 databases at first, and then apply the generalization techniques to the JAFFE and CK+ datasets respectively in the testing stage to evaluate the performance of the model. In the generalization approach on the JAFFE dataset, we get a 92.05% accuracy, while on the CK+ dataset, we acquire a 98.13% accuracy which achieve the best performance among existing methods. We also test the system's success by identifying facial expressions in real-time. ConvNet consists of four layers of convolution together with two fully connected layers. The experimental results show that the ConvNet is able to achieve 96% training accuracy which is much better than current existing models. However, when compared to other validation methods, the suggested technique was more accurate. ConvNet also achieved validation accuracy of 91.01% for the FER2013 dataset. We also made all the materials publicly accessible for the research community at: https://github.com/Tanoy004/Emotion-recognition-through-CNN .


Assuntos
Reconhecimento Facial , Ira , Emoções , Expressão Facial , Feminino , Humanos , Masculino , Redes Neurais de Computação
16.
Front Public Health ; 10: 769692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747775

RESUMO

One of the most common causes of death from cancer for both women and men is lung cancer. Lung nodules are critical for the screening of cancer and early recognition permits treatment and enhances the rate of rehabilitation in patients. Although a lot of work is being done in this area, an increase in accuracy is still required to swell patient persistence rate. However, traditional systems do not segment cancer cells of different forms accurately and no system attained greater reliability. An effective screening procedure is proposed in this work to not only identify lung cancer lesions rapidly but to increase accuracy. In this procedure, Otsu thresholding segmentation is utilized to accomplish perfect isolation of the selected area, and the cuckoo search algorithm is utilized to define the best characteristics for partitioning cancer nodules. By using a local binary pattern, the relevant features of the lesion are retrieved. The CNN classifier is designed to spot whether a lung lesion is malicious or non-malicious based on the retrieved features. The proposed framework achieves an accuracy of 96.97% percent. The recommended study reveals that accuracy is improved, and the results are compiled using Particle swarm optimization and genetic algorithms.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Algoritmos , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
17.
Front Oncol ; 12: 834028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769710

RESUMO

Breast cancer is the most menacing cancer among all types of cancer in women around the globe. Early diagnosis is the only way to increase the treatment options which then decreases the death rate and increases the chance of survival in patients. However, it is a challenging task to differentiate abnormal breast tissues from normal tissues because of their structure and unclear boundaries. Therefore, early and accurate diagnosis and classification of breast lesions into malignant or benign lesions is an active domain of research. Over the decade, numerous artificial neural network (ANN)-based techniques were adopted in order to diagnose and classify breast cancer due to the unique characteristics of learning key features from complex data via a training process. However, these schemes have limitations like slow convergence and longer training time. To address the above mentioned issues, this paper employs a meta-heuristic algorithm for tuning the parameters of the neural network. The main novelty of this work is the computer-aided diagnosis scheme for detecting abnormalities in breast ultrasound images by integrating a wavelet neural network (WNN) and the grey wolf optimization (GWO) algorithm. Here, breast ultrasound (US) images are preprocessed with a sigmoid filter followed by interference-based despeckling and then by anisotropic diffusion. The automatic segmentation algorithm is adopted to extract the region of interest, and subsequently morphological and texture features are computed. Finally, the GWO-tuned WNN is exploited to accomplish the classification task. The classification performance of the proposed scheme is validated on 346 ultrasound images. Efficiency of the proposed methodology is evaluated by computing the confusion matrix and receiver operating characteristic (ROC) curve. Numerical analysis revealed that the proposed work can yield higher classification accuracy when compared to the prevailing methods and thereby proves its potential in effective breast tumor detection and classification. The proposed GWO-WNN method (98%) gives better accuracy than other methods like SOM-SVM (87.5), LOFA-SVM (93.62%), MBA-RF (96.85%), and BAS-BPNN (96.3%).

18.
Math Biosci Eng ; 19(2): 1471-1495, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135213

RESUMO

Cloud computing is an attractive model that provides users with a variety of services. Thus, the number of cloud services on the market is growing rapidly. Therefore, choosing the proper cloud service is an important challenge. Another major challenge is the availability of diverse cloud services with similar performance, which makes it difficult for users to choose the cloud service that suits their needs. Therefore, the existing service selection approaches is not able to solve the problem, and cloud service recommendation has become an essential and important need. In this paper, we present a new way for context-aware cloud service recommendation. Our proposed method seeks to solve the weakness in user clustering, which itself is due to reasons such as 1) lack of full use of contextual information such as cloud service placement, and 2) inaccurate method of determining the similarity of two vectors. The evaluation conducted by the WSDream dataset indicates a reduction in the cloud service recommendation process error rate. The volume of data used in the evaluation of this paper is 5 times that of the basic method. Also, according to the T-test, the service recommendation performance in the proposed method is significant.


Assuntos
Computação em Nuvem , Análise por Conglomerados
19.
Front Public Health ; 10: 879418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712286

RESUMO

Age estimation in dental radiographs Orthopantomography (OPG) is a medical imaging technique that physicians and pathologists utilize for disease identification and legal matters. For example, for estimating post-mortem interval, detecting child abuse, drug trafficking, and identifying an unknown body. Recent development in automated image processing models improved the age estimation's limited precision to an approximate range of +/- 1 year. While this estimation is often accepted as accurate measurement, age estimation should be as precise as possible in most serious matters, such as homicide. Current age estimation techniques are highly dependent on manual and time-consuming image processing. Age estimation is often a time-sensitive matter in which the image processing time is vital. Recent development in Machine learning-based data processing methods has decreased the imaging time processing; however, the accuracy of these techniques remains to be further improved. We proposed an ensemble method of image classifiers to enhance the accuracy of age estimation using OPGs from 1 year to a couple of months (1-3-6). This hybrid model is based on convolutional neural networks (CNN) and K nearest neighbors (KNN). The hybrid (HCNN-KNN) model was used to investigate 1,922 panoramic dental radiographs of patients aged 15 to 23. These OPGs were obtained from the various teaching institutes and private dental clinics in Malaysia. To minimize the chance of overfitting in our model, we used the principal component analysis (PCA) algorithm and eliminated the features with high correlation. To further enhance the performance of our hybrid model, we performed systematic image pre-processing. We applied a series of classifications to train our model. We have successfully demonstrated that combining these innovative approaches has improved the classification and segmentation and thus the age-estimation outcome of the model. Our findings suggest that our innovative model, for the first time, to the best of our knowledge, successfully estimated the age in classified studies of 1 year old, 6 months, 3 months and 1-month-old cases with accuracies of 99.98, 99.96, 99.87, and 98.78 respectively.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Algoritmos , Criança , Análise por Conglomerados , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lactente , Radiografia Panorâmica
20.
Front Public Health ; 10: 849185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309219

RESUMO

In the last decade, smart computing has garnered much attention, particularly in ubiquitous environments, thus increasing the ease of everyday human life. Users can dynamically interact with the systems using different modalities in a smart computing environment. The literature discussed multiple mechanisms to enhance the modalities for communication using different knowledge sources. Among others, Multi-context System (MCS) has been proven quite significant to interlink various context domains dynamically to a distributed environment. MCS is a collection of different contexts (independent knowledge sources), and every context contains its own set of defined rules and facts and inference systems. These contexts are interlinked via bridge rules. However, the interaction among knowledge sources could have the consequences such as bringing out inconsistent results. These issues may report situations such as the system being unable to reach a conclusion or communication in different contexts becoming asynchronous. There is a need for a suitable framework to resolve inconsistencies. In this article, we provide a framework based on contextual defeasible reasoning and a formalism of multi-agent environment is to handle the issue of inconsistent information in MCS. Additionally, in this work, a prototypal simulation is designed using a simulation tool called NetLogo, and a formalism about a Parkinson's disease patient's case study is also developed. Both of these show the validity of the framework.


Assuntos
Atenção à Saúde , Lógica , Comunicação , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa