Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 46(12): 131, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123828

RESUMO

Non-equilibrium fluctuations caused by the rearrangement of hemoglobin molecules into an aggregate state under shear stress have been investigated experimentally. The flow response under the shear stress (σ) corroborates the presence of contrasting aggregate and rejuvenation states governed by entropy production and consumption events. From the time-dependent shear rate fluctuation studies of aggregate states, the probability distribution function (PDF) of the rate of work done is observed to be spread from negative to positive values with a net positive mean. The PDFs follow the steady-state fluctuation theorem, even at a smaller timescale than that desired by the theorem. The behavior of the effective temperature (Teff) that emerges from a non-equilibrium fluctuation and interconnects with the structural restrictions of the aggregate state of our driven system is observed to be within the boundary of the thermodynamic uncertainty. The increase in Teff with the applied σ illustrates a phenomenal nonlinear power flux-dependent aggregating behavior in a classic bio-molecular-driven system.

2.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683055

RESUMO

In the pursuit of precise diagnostics for measuring negative ion density in a helicon plasma source (HPS), a new approach utilizing a radio frequency (RF) broadband transformer-based Langmuir probe is developed specifically for laser photo-detachment (LPD) analysis. This inductively coupled LPD technique is useful for high power RF systems in which capacitive RF noise is in the same scale as the pulsed photo-detachment signal. The signal acquired by this transformer-based probe is compared against the conventional Langmuir probe-based LPD technique, revealing a remarkable enhancement in signal fidelity through an improved signal-to-noise ratio (SNR) achieved by the RF broadband transformer methodology. In addition, the localized hydrogen negative ion density measurements obtained through this probe are harmoniously aligned with the line-averaged negative ion density derived from the cavity ringdown spectroscopy (CRDS) technique. These concurrence measurements highlight the RF broadband transformer-based approach's accuracy in capturing localized negative ion density during helicon mode operation in an HPS setup. Furthermore, the correlation of negative ion density values with RF input exhibits a consistent trend in tandem with background plasma density. Notably, both CRDS and LPD measurements ascertain negative ion densities ranging from ∼5 to 6×1016 m-3 under an RF power of 500-700 W and a pressure of 8 × 10-3 mbar, all under the influence of a 55 G axial magnetic field. These specific parameters represent the optimal operational configuration for effective negative ion production with the present experimental HPS setup. Due to its better SNR, the RF broadband transformer-based Langmuir probe emerges as a useful tool for LPD diagnostics, particularly in the presence of pervasive RF noise.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa