Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Med ; 12(8): 933-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16862154

RESUMO

CD82, also known as KAI1, was recently identified as a prostate cancer metastasis suppressor gene on human chromosome 11p1.2 (ref. 1). The product of CD82 is KAI1, a 40- to 75-kDa tetraspanin cell-surface protein also known as the leukocyte cell-surface marker CD82 (refs. 1,2). Downregulation of KAI1 has been found to be clinically associated with metastatic progression in a variety of cancers, whereas overexpression of CD82 specifically suppresses tumor metastasis in various animal models. To define the mechanism of action of KAI1, we used a yeast two-hybrid screen and identified an endothelial cell-surface protein, DARC (also known as gp-Fy), as an interacting partner of KAI1. Our results indicate that the cancer cells expressing KAI1 attach to vascular endothelial cells through direct interaction between KAI1 and DARC, and that this interaction leads to inhibition of tumor cell proliferation and induction of senescence by modulating the expression of TBX2 and p21. Furthermore, the metastasis-suppression activity of KAI1 was significantly compromised in DARC knockout mice, whereas KAI1 completely abrogated pulmonary metastasis in wild-type and heterozygous littermates. These results provide direct evidence that DARC is essential for the function of CD82 as a suppressor of metastasis.


Assuntos
Sistema do Grupo Sanguíneo Duffy/metabolismo , Endotélio Vascular/metabolismo , Proteína Kangai-1/metabolismo , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/metabolismo , Metástase Neoplásica/prevenção & controle , Receptores de Superfície Celular/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Senescência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Sistema do Grupo Sanguíneo Duffy/química , Feminino , Heterozigoto , Humanos , Proteína Kangai-1/química , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptores de Superfície Celular/química , Proteínas com Domínio T/metabolismo
2.
Cancer Res ; 67(4): 1411-4, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17308076

RESUMO

Tumor metastases suppressor protein KAI1/CD82 is capable of blocking the tumor metastases without affecting the primary tumor formation, and its expression is significantly down-regulated in many types of human cancers. However, the exact molecular mechanism of the suppressor function of KAI1 remains elusive. Evidence from our laboratory supports a model in which tumor cells dislodge from the primary tumor and intravasate into the blood or lymphatic vessels followed by attachment to the endothelial cell surface whereby KAI1 interacts with the Duffy antigen receptor for chemokines (DARC) protein. This interaction transmits a senescent signal to cancer cells expressing KAI1, whereas cells that lost KAI1 expression can proliferate, potentially giving rise to metastases. Our model of the mechanism of action of KAI1 shows that metastasis suppressor activity can be dependent on interaction with host tissue and explains how KAI1 suppresses metastasis without affecting primary tumor formation. Taken together, in vitro and in vivo studies identify the KAI1-DARC interaction as a potential target for cancer therapy.


Assuntos
Sistema do Grupo Sanguíneo Duffy/metabolismo , Proteína Kangai-1/metabolismo , Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Células Endoteliais/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/patologia
3.
Cancer Res ; 66(11): 5934-40, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16740734

RESUMO

Fatty acid synthase (FAS) has been found to be overexpressed in a wide range of epithelial tumors, including breast cancer. Pharmacologic inhibitors of FAS cause apoptosis of breast cancer cells and result in decreased tumor size in vivo. However, how the inhibition of FAS induces apoptosis in tumor cells remains largely unknown. To understand the apoptotic pathway resulting from direct inhibition of FAS, we treated breast tumor cells with or without FAS small interfering RNA (siRNA) followed by a microarray analysis. Our results indicated that the proapoptotic genes BNIP3, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and death-associated protein kinase 2 (DAPK2) were significantly up-regulated on direct inhibition of the FAS gene. We also found that the knockdown of FAS expression significantly increased ceramide level in the tumor cells, and this increase was abrogated by acetyl-CoA carboxylase inhibitor. In addition, carnitine palmitoyltransferase-1 (CPT-1) inhibitor up-regulated the ceramide and BNIP3 levels in these cells, whereas treatment of tumor cells with FAS siRNA in the presence of a ceramide synthase inhibitor abrogated the up-regulation of BNIP3 and inhibited apoptosis. Furthermore, we found that treatment of cells with BNIP3 siRNA significantly counteracted the effect of FAS siRNA-mediated apoptosis. Consistent with these results, a significant inverse correlation was observed in the expression of FAS and BNIP3 in clinical samples of human breast cancer. Collectively, our results indicate that inhibition of FAS in breast cancer cells causes accumulation of malonyl-CoA, which leads to inhibition of CPT-1 and up-regulation of ceramide and induction of the proapoptotic genes BNIP3, TRAIL, and DAPK2, resulting in apoptosis.


Assuntos
Apoptose/fisiologia , Neoplasias da Mama/enzimologia , Ácido Graxo Sintases/antagonistas & inibidores , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular , Ácido Graxo Sintases/genética , Humanos , Glicoproteínas de Membrana/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
4.
Cancer Res ; 66(24): 11983-90, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17178897

RESUMO

The tumor metastasis suppressor gene Drg-1 has been shown to suppress metastasis without affecting tumorigenicity in immunodeficient mouse models of prostate and colon cancer. Expression of Drg-1 has also been found to have a significant inverse correlation with metastasis or invasiveness in various types of human cancer. However, how Drg-1 exerts its metastasis suppressor function remains unknown. In the present study, to elucidate the mechanism of action of the Drg-1 gene, we did a microarray analysis and found that induction of Drg-1 significantly inhibited the expression of activating transcription factor (ATF) 3, a member of the ATF/cyclic AMP-responsive element binding protein family of transcription factors. We also showed that Drg-1 attenuated the endogenous level of ATF3 mRNA and protein in prostate cancer cells, whereas Drg-1 small interfering RNA up-regulated the ATF3 expression. Furthermore, Drg-1 suppressed the promoter activity of the ATF3 gene, indicating that Drg-1 regulates ATF3 expression at the transcriptional level. Our immunohistochemical analysis on prostate cancer specimens revealed that nuclear expression of ATF3 was inversely correlated to Drg-1 expression and positively correlated to metastases. Consistently, we have found that ATF3 overexpression promoted invasiveness of prostate tumor cells in vitro, whereas Drg-1 suppressed the invasive ability of these cells. More importantly, overexpression of ATF3 in prostate cancer cells significantly enhanced spontaneous lung metastasis of these cells without affecting primary tumorigenicity in a severe combined immunodeficient mouse model. Taken together, our results strongly suggest that Drg-1 suppresses metastasis of prostate tumor cells, at least in part, by inhibiting the invasive ability of the cells via down-regulation of the expression of the ATF3 gene.


Assuntos
Fator 3 Ativador da Transcrição/genética , Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Humanos , Masculino , Metástase Neoplásica/genética , Metástase Neoplásica/prevenção & controle , Plasmídeos , Neoplasias da Próstata/patologia , Mapeamento por Restrição , Transfecção
5.
Oncogene ; 24(34): 5389-95, 2005 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-15897909

RESUMO

Fatty acid synthase (FAS), a key enzyme of the fatty acid biosynthetic pathway, has been shown to be overexpressed in various types of human cancer and is, therefore, considered to be an attractive target for anticancer therapy. However, the exact mechanism of overexpression of the FAS gene in tumor cells is not well understood. In this report, we demonstrate that the expression of the tumor suppressor gene PTEN has a significant inverse correlation with FAS expression in the case of prostate cancer in the clinical setting, and inhibition of the PTEN gene leads to the overexpression of FAS in vitro. We also found that the combination of the expression status of these two genes is a better prognostic marker than either gene alone. Furthermore, our results indicate that the specific inhibition of FAS gene by siRNA leads to apoptosis of prostate tumor cells, and inhibition of PI 3-kinase pathway synergizes with FAS siRNA to enhance tumor cell death. These results provide a strong rationale for exploring the therapeutic use of an inhibitor of the PTEN signaling pathway in conjunction with the FAS siRNA to inhibit prostate tumor growth.


Assuntos
Apoptose , Ácido Graxo Sintases/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Neoplasias da Próstata/genética , Proteínas Supressoras de Tumor/biossíntese , Idoso , Idoso de 80 Anos ou mais , Ácido Graxo Sintases/biossíntese , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase , Prognóstico , Neoplasias da Próstata/patologia , Interferência de RNA , Transdução de Sinais , Análise de Sobrevida
6.
Front Biosci ; 11: 2845-60, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16720356

RESUMO

Despite significant improvement in surgical techniques and chemotherapies, none of the current medical technologies "cure" metastatic disease, and the patients who have acquired metastatic cancer inevitably die from disseminated disease. Thus, there is a need for developing novel therapeutic approaches which can directly target metastatic tumor cells. However, advances in understanding the molecular mechanism of tumor metastases have lagged behind other developments in the cancer field. Tumor metastasis involves complex array of steps with each step requiring a coordination of the actions of many positive and negative factors. A number of tumor metastasis suppressors have been identified which suppress the formation of tumor metastasis without affecting the growth rate of the primary tumor. Such discoveries offer new approaches for curtailing tumor metastasis. This review summarizes our current understanding on these genes and their potential role in the progression of tumor metastases.


Assuntos
Neoplasias da Mama/patologia , Genes Supressores de Tumor , Metástase Neoplásica/genética , Neoplasias da Próstata/patologia , Neoplasias da Mama/genética , Feminino , Genes Neoplásicos , Humanos , Masculino , Neoplasias da Próstata/genética
7.
Cancer Res ; 63(8): 1731-6, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12702552

RESUMO

Drg-1 was previously identified (N. van Belzen et al., Lab. Investig., 77: 85-92, 1997) as a gene that was up-regulated by the induction of differentiation in a colon carcinoma cell line in vitro. Subsequently, this gene was found to be regulated by several factors including hypoxia, androgen, p53, and N-myc. Recently, Drg-1 has also been shown to be involved in tumor progression in animals, although the clinical significance of its involvement remains to be investigated. To clarify the functional role of Drg-1 in prostate cancer, we examined a clinical archive of cancer specimens for the expression of Drg-1 by immunohistochemistry. We found that the expression of Drg-1 had a significant inverse correlation with the Gleason grading and the overall survival rate of patients. In particular, the gene expression in patients with lymph node or bone metastasis was significantly reduced as compared with those with localized prostate cancer, suggesting that the function of Drg-1 is negatively involved in metastatic progression of the disease. To further clarify the function of this gene in the advancement of prostate cancer, a spontaneous metastasis assay was performed in a severe combined immunodeficient (SCID) mouse model. We found that Drg-1 almost completely inhibited lung colonization of highly metastatic prostate cancer cells without affecting the growth of the primary tumors. These results strongly suggest that Drg-1 is a candidate metastasis suppressor gene for prostate cancer and may serve as a useful prognostic marker.


Assuntos
Proteínas de Ciclo Celular/genética , Genes Supressores de Tumor , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas de Ciclo Celular/biossíntese , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transfecção
8.
Cancer Res ; 64(21): 7655-60, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15520163

RESUMO

PTEN (phosphatase and tensin homologue deleted on chromosome 10) has been shown to be inactivated in a wide variety of cancers, and the role of this gene as a tumor suppressor has been well established. On the other hand, results of recent animal studies as well as clinical evidence indicate that PTEN is also involved in tumor metastasis suppression. Although PTEN is known to play a key role in controlling cell growth and apoptosis, how PTEN exerts the metastasis suppressor function remains largely unknown. Recently, a microarray analysis identified the Drg-1 gene (differentiation related gene 1) as one of the potential targets of PTEN. The Drg-1 gene has been shown to suppress tumor metastasis in animal models of prostate and colon cancer, and the expression of this gene is significantly reduced with advancement of prostate and breast cancers in clinical setting. In this study, we explored the possibility that PTEN controls tumor metastasis by regulating the expression of the Drg-1 gene. Our results indicate that overexpression of PTEN significantly augments the endogenous expression of Drg-1 protein, whereas inhibition of PTEN by small interfering RNA decreases Drg-1 in a dose- and time-dependent manner. We also found that the control of the Drg-1 gene by PTEN seems to be at the transcriptional level, and that a phospho-Akt inhibitor restores the Drg-1 expression, indicating that PTEN controls Drg-1 by an Akt-dependent pathway. Consistent with these results, our immunohistochemical analysis revealed that PTEN expression correlates significantly with Drg-1 in both prostate and breast cancer cases. Furthermore, combination of the two markers, PTEN and Drg-1, emerged as a significantly better predictor of prostate and breast cancer patient survival than either marker alone.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Genes Supressores de Tumor , Monoéster Fosfórico Hidrolases/fisiologia , Neoplasias da Próstata/genética , Proteínas Supressoras de Tumor/fisiologia , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , PTEN Fosfo-Hidrolase , Neoplasias da Próstata/mortalidade , Taxa de Sobrevida , Regulação para Cima
9.
Oncogene ; 23(33): 5675-81, 2004 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15184886

RESUMO

The differentiation-related gene-1 (Drg-1) was first identified as a gene strongly upregulated by induction of differentiation in colon carcinoma cells in vitro, and later the same gene was shown to suppress tumorigenicity of human bladder cancer cells in vivo. On the other hand, we and others have demonstrated that the Drg-1 gene suppresses prostate and colon cancer metastases in mouse models. In the context of such potential organ-specific differential function of the Drg-1 gene, the present study was designed to clarify the expression status, regulation and function of Drg-1 in the case of human breast cancer. We found that the expression of the Drg-1 protein was significantly reduced in breast tumor cells, particularly in patients with lymph node or bone metastasis as compared to those with localized breast cancer. Drg-1 expression also exhibited significant inverse correlation with the disease-free survival rate of patients and emerged as an independent prognostic factor. The downregulation of the Drg-1 gene appeared to be largely at the RNA level, and the DNA methylation inhibitor, 5-Azacytidine, significantly elevated the Drg-1 gene expression in various breast tumor cell lines. Furthermore, we found that overexpression of the Drg-1 gene suppresses the invasiveness of breast cancer cells in vitro, and this suppression was also achieved by treatment of cells with 5-Azacytidine. Together, our results strongly suggest functional involvement of the Drg-1 gene in suppressing the metastatic advancement of human breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação ao GTP/genética , Metilação de DNA , Progressão da Doença , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Metástase Neoplásica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
10.
Cancer Res ; 68(18): 7613-20, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18794150

RESUMO

RhoC is a member of the Ras-homologous family of genes which have been implicated in tumorigenesis and tumor progression. However, the exact role of RhoC is controversial and is yet to be clarified. We have examined the effect of RhoC on prostate tumor cells and found that RhoC had no effect on cell proliferation in vitro or on tumor growth in mice. However, RhoC significantly enhanced the metastatic ability of the tumor cells in these animals, suggesting that RhoC affects only the metastasis but not the growth of prostate tumor cells. The results of our immunohistochemical analyses on tumor specimens from 63 patients with prostate cancer indicate that RhoC expression had no significant correlation with Gleason grade. However, the expression of RhoC showed significant positive correlation with both lymph node and distant metastasis, and it was inversely correlated with patient survival. We also found that RhoC significantly augmented the invasion and motility of prostate tumor cells by activating matrix metalloproteinases 2 and 9 (MMP2 and MMP9) in vitro. The results of our antibody array analysis for signal molecules revealed that RhoC significantly activated kinases including mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK), Akt, and Pyk2. Inhibition of Pyk2 kinase blocked the RhoC-dependent activation of FAK, MAPK, and Akt, followed by the suppression of MMP2 and MMP9. Inhibitors of both MAPK and Akt also significantly blocked the activities of these MMPs. Therefore, our results indicate that RhoC promotes tumor metastasis in prostate cancer by sequential activation of Pyk2, FAK, MAPK, and Akt followed by the up-regulation of MMP2 and MMP9, which results in the stimulation of invasiveness of tumor cells.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Ativação Enzimática , Quinase 1 de Adesão Focal/metabolismo , Humanos , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Metástase Neoplásica , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ratos , Transdução de Sinais , Regulação para Cima , Proteínas rho de Ligação ao GTP/biossíntese , Proteína de Ligação a GTP rhoC
11.
Cancer Res ; 68(4): 1003-11, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18281474

RESUMO

The fatty acid synthase (FAS) gene is significantly up-regulated in various types of cancers, and blocking the FAS expression results in apoptosis of tumor cells. Therefore, FAS is considered to be an attractive target for anticancer therapy. However, the molecular mechanism by which the FAS gene is up-regulated in tumor cells is poorly understood. We found that FAS was significantly up-regulated by hypoxia, which was also accompanied by reactive oxygen species (ROS) generation in human breast cancer cell lines. The FAS expression was also activated by H(2)O(2), whereas N-acetyl-L-cystein, a ROS inhibitor, suppressed the expression. We also found that the hypoxia significantly up-regulated sterol regulatory-element binding protein (SREBP)-1, the major transcriptional regulator of the FAS gene, via phosphorylation of Akt followed by activation of hypoxia-inducible factor 1 (HIF1). Moreover, our results of reporter assay and chromatin immunoprecipitation analysis indicate that SREBP-1 strongly bound to the SREBP binding site/E-box sequence on the FAS promoter under hypoxia. In our xenograft mouse model, FAS was strongly expressed in the hypoxic regions of the tumor. In addition, our results of immunohistochemical analysis for human breast tumor specimens indicate that the expressions of both FAS and SREBP-1 were colocalized with hypoxic regions in the tumors. Furthermore, we found that hypoxia-induced chemoresistance to cyclophosphamide was partially blocked by a combination of FAS inhibitor and cyclophosphamide. Taken together, our results indicate that FAS gene is up-regulated by hypoxia via activation of the Akt and HIF1 followed by the induction of the SREBP-1 gene, and that hypoxia-induced chemoresistance is partly due to the up-regulation of FAS.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Ácido Graxo Sintases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Hipóxia Celular/genética , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Ciclofosfamida/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Inibidores Enzimáticos/administração & dosagem , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/biossíntese , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/biossíntese , Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
12.
Microvasc Res ; 74(2-3): 114-20, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17498748

RESUMO

Metastasis is the primary cause of death in cancer patients. However, the molecular mechanism of the metastatic process is poorly understood because it involves multiple steps with a high degree of complexity. A critical step for successful establishment of secondary colonization is the hematogenous dissemination of malignant cells. During this process, the attachment of cancer cells to the endothelial cells on microvasculature is considered to be an essential step and many adhesion molecules as well as chemokines have been found to be involved in this process. This interaction of cancer-endothelial cell is considered not only to determine the physical site of metastasis, but also to provide the necessary anchorage to facilitate tumor cell extravasation. However, recent evidence indicates that this interaction also serves as a host defense mechanism and hinders the process of metastasis. The tumor metastases suppressor gene, KAI1, has been known to block metastatic process without affecting the primary tumor growth, and this protein has been found to be able to bind to the chemokine receptor, Duffy antigen receptor for chemokines (DARC), which is expressed on endothelial cells. Importantly, this interaction markedly induces senescence of tumor cells. This novel finding is not only significant in the context of molecular dissection of metastatic process but also in the therapeutic implication to develop drugs inhibiting metastasis.


Assuntos
Células Endoteliais/metabolismo , Genes Supressores de Tumor , Metástase Neoplásica/genética , Neoplasias/metabolismo , Animais , Sistema do Grupo Sanguíneo Duffy/metabolismo , Genes Supressores de Tumor/fisiologia , Humanos , Proteína Kangai-1/metabolismo , Modelos Biológicos , Metástase Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Neoplasias/genética , Neoplasias/patologia , Receptores de Superfície Celular/metabolismo
13.
Int J Cancer ; 118(10): 2441-7, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16380976

RESUMO

Prostate cancer is a major cause of cancer death and morbidity in western countries. However, because of its intrinsic nature of chemoresistance, there is only limited systemic therapy available for the patients. Vitamin E (VE) has been under intensive study as a chemopreventive agent for various types of cancers. Preclinical studies suggest that vitamin E succinate (VES) is the most effective antitumor analogue of VE, yet there are scarce studies of VES in prostate cancer. In this study, we investigated the effects of VES on a panel of prostate cancer cells, and a xenograft model of prostate cancer. Our results indicate that VES significantly inhibited proliferation and induced apoptosis of prostate cancer cell lines in a dose and time dependent manner. The results of microarray analysis followed by real-time RT-PCR and inhibitor analyses indicated that the VES-induced apoptosis is mediated by caspase-4 in prostate tumor cells. In our animal model of prostate cancer in SCID mouse, daily injection of VES significantly suppressed tumor growth as well as lung metastases. These results suggest a potential therapeutic utility of VES for patients with prostate cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Próstata/patologia , Vitamina E/análogos & derivados , Animais , Caspases/biossíntese , Caspases/metabolismo , Caspases Iniciadoras , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tocoferóis , Transplante Heterólogo , Células Tumorais Cultivadas , Vitamina E/farmacologia
14.
Nutr Cancer ; 43(1): 76-81, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12467138

RESUMO

Solidago virgaurea (goldenrod) has traditionally been used as an anti-inflammatory herbal medicine for the treatment of various symptoms, including prostatic diseases. The plant has also been reported to have antibacterial, spasmolytic, and carminative properties. During the course of our screening for antineoplastic activities in various herbal plants, we found that the extract of S. virgaurea exhibits strong cytotoxic activities on various tumor cell lines. The active component mostly resides in the leaves of the plant and is soluble in water. When the extract was fractionated by a Sephadex G-100 column, the active fraction corresponded to a molecular weight of approximately 40,000. This cytotoxic activity is effective on various tumor cell lines, including human prostate (PC3), breast (MDA435), melanoma (C8161), and small cell lung carcinoma (H520). To examine the effect of the cytotoxic activity on tumor cells in vivo, we used the rat prostate cell line (AT6.1) and an SCID mouse model. AT6.1 cells were injected into the flank of SCID mice, and then the G-100 fraction of S. virgaurea was administered intraperitoneally or subcutaneously every 3 days. The size of the tumor was measured for up to 25 days. The growth of the tumor was significantly suppressed by the G-100 fraction at 5 mg/kg without any apparent side effects. Therefore, S. virgaurea is considered to be promising as an antineoplastic medicine with minimal toxicities.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Fitoterapia , Extratos Vegetais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Solidago , Animais , Caspase 3 , Caspases/análise , Divisão Celular/efeitos dos fármacos , Citometria de Fluxo , Masculino , Camundongos , Camundongos SCID , Células Tumorais Cultivadas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa