Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(1): e35352, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982372

RESUMO

The development of patient-specific bone scaffolds that can expedite bone regeneration has been gaining increased attention, especially for critical-sized bone defects or fractures. Precise adaptation of the scaffold to the region of implantation and reduced surgery times are also crucial at clinical scales. To this end, bioactive fluorcanasite glass-ceramic microparticulates were incorporated within a biocompatible photocurable resin matrix following which the biocomposite resin precursor was 3D-printed with digital light processing method to develop the bone scaffold. The printing parameters were optimized based on spot curing investigation, particle size data, and UV-visible spectrophotometry. In vitro cell culture with MG-63 osteosarcoma cell lines and pH study within simulated body fluid demonstrated a noncytotoxic response of the scaffold samples. Further, the in vivo bone regeneration ability of the 3D-printed biocomposite bone scaffolds was investigated by implantation of the scaffold samples in the rabbit femur bone defect model. Enhanced angiogenesis, osteoblastic, and osteoclastic activities were observed at the bone-scaffold interface, while examining through fluorochrome labelling, histology, radiography, field emission scanning electron microscopy, and x-ray microcomputed tomography. Overall, the results demonstrated that the 3D-printed biocomposite bone scaffolds have promising potential for bone loss rehabilitation.


Assuntos
Osso e Ossos , Vidro , Alicerces Teciduais , Animais , Humanos , Coelhos , Microtomografia por Raio-X , Regeneração Óssea , Impressão Tridimensional , Osteogênese , Engenharia Tecidual
2.
J Biomater Sci Polym Ed ; 34(4): 497-540, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36124544

RESUMO

Natural bone healing is often inadequate to treat fractures with critical size bone defects and massive bone loss. Immediate surgical interventions through bone grafts have been found to be essential on such occasions. Naturally harvested bone grafts, although are the preferred choice of the surgeons; they suffer from serious clinical limitations, including disease transmission, donor site morbidity, limited supply of graft etc. Synthetic bone grafts, on the other hand, offer a more clinically appealing approach to decode the pathways of bone repair through use of tissue engineered biomaterials. This article critically retrospects the translational research on various engineered biomaterials towards bringing transformative changes in orthopaedic healthcare. The first section of the article discusses about composition and ultrastructure of bone along with the global perspectives on statistical escalation of bone fracture surgeries requiring use of bone grafts. The next section reviews the types, benefits and challenges of various natural and synthetic bone grafts. An overview of clinically relevant biomaterials from traditionally used metallic, bioceramic, and biopolymeric biomaterials to new generation composites have been summarised. Finally, this narrative review concludes with the discussion on the emerging trends and future perspectives of the promising bone grafts.


Assuntos
Materiais Biocompatíveis , Pesquisa Translacional Biomédica , Transplante Ósseo , Osso e Ossos , Engenharia Tecidual
3.
Biofabrication ; 15(4)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37669643

RESUMO

Rehabilitative capabilities of any tissue engineered scaffold rely primarily on the triad of (i) biomechanical properties such as mechanical properties and architecture, (ii) chemical behavior such as regulation of cytokine expression, and (iii) cellular response modulation (including their recruitment and differentiation). The closer the implant can mimic the native tissue, the better it can rehabilitate the damage therein. Among the available fabrication techniques, only 3D bioprinting (3DBP) can satisfactorily replicate the inherent heterogeneity of the host tissue. However, 3DBP scaffolds typically suffer from poor mechanical properties, thereby, driving the increased research interest in development of load-bearing 3DBP orthopedic scaffolds in recent years. Typically, these scaffolds involve multi-material 3D printing, comprising of at-least one bioink and a load-bearing ink; such that mechanical and biological requirements of the biomaterials are decoupled. Ensuring high cellular survivability and good mechanical properties are of key concerns in all these studies. 3DBP of such scaffolds is in early developmental stages, and research data from only a handful of preliminary animal studies are available, owing to limitations in print-capabilities and restrictive materials library. This article presents a topically focused review of the state-of-the-art, while highlighting aspects like available 3DBP techniques; biomaterials' printability; mechanical and degradation behavior; and their overall bone-tissue rehabilitative efficacy. This collection amalgamates and critically analyses the research aimed at 3DBP of load-bearing scaffolds for fulfilling demands of personalized-medicine. We highlight the recent-advances in 3DBP techniques employing thermoplastics and phosphate-cements for load-bearing applications. Finally, we provide an outlook for possible future perspectives of 3DBP for load-bearing orthopedic applications. Overall, the article creates ample foundation for future research, as it gathers the latest and ongoing research that scientists could utilize.


Assuntos
Bioimpressão , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Osso e Ossos , Suporte de Carga
4.
J Biomed Mater Res B Appl Biomater ; 111(2): 463-477, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208413

RESUMO

Magnesium (Mg) alloy-based porous bio-nanocomposite bone scaffolds were developed by powder metallurgy route. Selective alloying elements such as calcium (Ca), zinc (Zn) and strontium (Sr) were incorporated to tune the mechanical integrity while, bioactive fluorcanasite nano-particulates were introduced within the alloy system to enhance the bone tissue regeneration. Green compacts containing carbamide were fabricated and sintered using two-stage heat treatment process to achieve the targeted porosities. The microstructure of these fabricated magnesium alloy-based bio-nanocomposites was examined by Field emission scanning electron microscope (FE-SEM) and x-ray micro computed tomography (x-ray µCT), which revealed gradient porosities and distribution of alloying elements. X-ray diffraction (XRD) studies confirmed the presence of major crystalline phases in the fabricated samples and the evolution of the various combinations of intermetallic phases of Ca, Mg, Zn and Sr which were anticipated to enhance the mechanical properties. Further, XRD studies revealed the presence of apatite phase for the immersed samples, a conducive environment for bone regeneration. The fabricated samples were evaluated for their mechanical performance against uniaxial compression load. The tunability of compressive strengths and modulus values could be established with variation in porosities of fabricated samples. The retained compressive strength and Young's modulus of the samples following immersion in phosphate buffered saline (PBS) solution was found to be in line with that of natural human cancellous bone, thereby establishing the potential of the fabricated magnesium-alloy-based nanocomposite as a promising scaffold candidate for bone tissue engineering.


Assuntos
Ligas , Nanocompostos , Humanos , Ligas/química , Magnésio/química , Microtomografia por Raio-X , Porosidade , Nanocompostos/química , Estrôncio/química , Alicerces Teciduais/química
5.
Biosensors (Basel) ; 10(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326229

RESUMO

: Changing lifestyle and food habits are responsible for health problems, especially those related to bone in an aging population. Poor bone health has now become a serious matter of concern for many of us. In order to avoid serious consequences, the early prediction of symptoms and diagnosis of bone diseases have become the need of the hour. From this inspiration, the evolution of different bone health monitoring techniques and measurement methods practiced by researchers and healthcare companies has been discussed. This paper focuses on various types of bone diseases along with the modeling and remodeling phenomena of bones. The evolution of various diagnosis tests for bone health monitoring has been also discussed. Various types of bone turnover markers, their assessment techniques, and recent developments for the monitoring of biochemical markers to diagnose the bone conditions are highlighted. Then, the paper focuses on the potential assessment of the recent sensing techniques (physical sensors and biosensors) that are currently available for bone health monitoring. Considering the importance of electrochemical biosensors in terms of high sensitivity and reliability, specific attention has been given to the recent development of electrochemical biosensors and significance in real-time monitoring of bone health.


Assuntos
Biomarcadores/análise , Técnicas Biossensoriais/métodos , Osso e Ossos/metabolismo , Densidade Óssea , Comportamento Alimentar , Humanos , Estilo de Vida
6.
J Mech Behav Biomed Mater ; 96: 45-52, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31029994

RESUMO

Porous magnesium based materials are gaining intensive potential as a substitute scaffold material in the field of biomedical engineering as their mechanical properties such as compressive strength and elastic modulus are quite similar to that of human bone. Considering the poor mechanical integrity of ceramic and polymeric materials, metallic implants such as magnesium based alloy foams can be used as a promising scaffold material for bone tissue engineering. Magnesium foams also have properties like excellent biocompatibility and biodegradability so that revision surgery can be completely eliminated after implantation in orthopaedic applications. Against this background, porous Mg alloy based bioactive nano-composite foams were developed. Nano-hydroxyapatite (n-HA) was used as bioactive reinforcement which was anticipated to enhance bone tissue regenerations. Magnesium based alloy compositions were developed by incorporating selective alloying elements, while the bioactive nano-composite foams were fabricated using powder metallurgy route. The powder metallurgy route involved sequential stages of mixing and compaction of all powders with carbamide powder as a space holding material, followed by sintering of the green compacts. The microstructures of these nano-ceramic reinforced metal matrix foams were studied by scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and X-ray micro computed tomography (X-ray micro CT). Further, mechanical properties of the nanocomposite foams were evaluated. SEM and EDS results confirmed a homogeneous distribution of pores, alloying elements and n-HA. Structure-property correlations were established through the microstructural characterizations. The study therefore demonstrated that selected Mg alloy based composite foam can be an excellent candidate material for bone tissue engineering.


Assuntos
Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Nanocompostos/química , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Ligas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia , Fenômenos Mecânicos , Porosidade
7.
J Mater Sci Mater Med ; 19(2): 839-46, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17665105

RESUMO

Modified fluorcanasite glass-ceramics were produced by controlled two stage heat-treatment of as-cast glasses. Castability was determined using a spiral castability test and the lost-wax method. Specimens were cast into moulds formed from gypsum and phosphate bonded investments to observe their effect on the casting process, surface roughness, surface composition and biocompatibility. Both gypsum and phosphate bonded investments could be successfully used for the lost-wax casting of fluorcanasite glasses. Although the stoichiometric glass composition had the highest castability, all modified compositions showed good relative castability. X-ray diffraction showed similar bulk crystallisation for each glass, irrespective of the investment material. However, differences in surface crystallisation were detected when different investment materials were used. Gypsum bonded investment discs showed slightly improved in vitro biocompatibility than equivalent phosphate bonded investment discs under the conditions used.


Assuntos
Cerâmica/química , Vidro/química , Silicatos/química , Animais , Materiais Biocompatíveis/química , Substitutos Ósseos/química , Linhagem Celular Tumoral , Ratos , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa