Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1377965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628868

RESUMO

In the present study, a thermophilic strain designated CamBx3 was isolated from the Campanario hot spring, Chile. Based on 16S rRNA gene sequence, phylogenomic, and average nucleotide identity analysis the strain CamBx3 was identified as Bacillus paralicheniformis. Genome analysis of B. paralicheniformis CamBx3 revealed the presence of genes related to heat tolerance, exopolysaccharides (EPS), dissimilatory nitrate reduction, and assimilatory sulfate reduction. The pangenome analysis of strain CamBx3 with eight Bacillus spp. resulted in 26,562 gene clusters, 7,002 shell genes, and 19,484 cloud genes. The EPS produced by B. paralicheniformis CamBx3 was extracted, partially purified, and evaluated for its functional activities. B. paralicheniformis CamBx3 EPS with concentration 5 mg mL-1 showed an optimum 92 mM ferrous equivalent FRAP activity, while the same concentration showed a maximum 91% of Fe2+ chelating activity. B. paralicheniformis CamBx3 EPS (0.2 mg mL-1) demonstrated ß-glucosidase inhibition. The EPS formed a viscoelastic gel at 45°C with a maximum instantaneous viscosity of 315 Pa.s at acidic pH 5. The present study suggests that B. paralicheniformis CamBx3 could be a valuable resource for biopolymers and bioactive molecules for industrial applications.

2.
Nat Prod Bioprospect ; 14(1): 15, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310179

RESUMO

A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 °C) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [→ 6)-⍺-D-Manp-(1 → 6)-⍺-D-Manp-(1 →] backbone 2-O substituted with 1-⍺-D-Manp. A high thermal stability of EPS (287 °C) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.

3.
Polymers (Basel) ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891555

RESUMO

This article presents new research on producing lignin nanoparticles (LNPs) using the antisolvent nanoprecipitation method. Acetone (90%) served as the lignin solvent and water (100%) as the antisolvent, using five types of lignins from various sources. Comprehensive characterization techniques, including NMR, GPC, FTIR, TEM, and DLS, were employed to assess both lignin and LNP properties. The antioxidant activity of the LNPs was evaluated as well. The results demonstrated the successful formation of spherical nanoparticles below 100 nm with initial lignin concentrations of 1 and 2%w/v. The study highlighted the crucial role of lignin purity in LNP formation and colloidal stability, noting that residual carbohydrates adversely affect efficiency. This method offers a straightforward, environmentally friendly approach using cost-effective solvents, applicable to diverse lignin sources. The innovation of this study lies in its demonstration of a cost-effective and eco-friendly method to produce stable, nanometric-sized spherical LNPs. These LNPs have significant potential as reinforcement materials due to their reinforcing capability, hydrophilicity, and UV absorption. This work underscores the importance of starting material purity for optimizing the process and achieving the desired nanometric dimensions, marking a pioneering advancement in lignin-based nanomaterials.

4.
Electron. j. biotechnol ; 43: 1-7, Jan. 2020. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1087520

RESUMO

Background: Textile industry not only plays a vital role in our daily life but also a prominent factor in improving global economy. One of the environmental concern is it releases huge quantities of toxic dyes in the water leading to severe environmental pollution. Bacterial laccase and azoreductase successfully oxidize complex chemical structure of nitrogen group-containing azo dyes. Additionally, the presence of textile dye infuriates bacterial peroxidase to act as a dye degrading enzyme. Our present study deals with three textile dye degrading enzymes laccase, azoreductase, and peroxidase through analyzing their structural and functional properties using standard computational tools. Result: According to the comparative analysis of physicochemical characteristics, it was clear that laccase was mostly made up of basic amino acids whereas azoreductase and peroxidase both comprised of acidic amino acids. Higher aliphatic index ascertained the thermostability of all these three enzymes. Negative GRAVY value of the enzymes confirmed better water interaction of the enzymes. Instability index depicted that compared to laccase and preoxidase, azoreductase was more stable in nature. It was also observed that the three model proteins had more than 90% of total amino acids in the favored region of Ramachandran plot. Functional analysis revealed laccase as multicopper oxidase type enzyme and azoreductase as FMN dependent enzyme, while peroxidase consisted of α-ß barrel with additional haem group. Conclusion: Present study aims to provide knowledge on industrial dye degrading enzymes, choosing the suitable enzyme for industrial set up and to help in understanding the experimental laboratory requirements as well.


Assuntos
Compostos Azo/metabolismo , Peroxidase/química , Lacase/química , NADH NADPH Oxirredutases/química , Temperatura , Compostos Azo/química , Indústria Têxtil , Biodegradação Ambiental , Simulação por Computador , Estabilidade Enzimática , Peroxidase/metabolismo , Lactase/metabolismo , Corantes/metabolismo , NADH NADPH Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa