Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lung India ; 41(2): 84-92, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700400

RESUMO

BACKGROUND: Mycobacterium w (Mw), an immunomodulator, resulted in better clinical status in severe coronavirus infectious disease 19 (COVID-19) but no survival benefit in a previous study. Herein, we investigate whether Mw could improve clinical outcomes and survival in COVID-19. MATERIALS AND METHODS: In a multicentric, randomized, double-blind, parallel-group, placebo-controlled trial, we randomized hospitalized subjects with severe COVID-19 to receive either 0.3 mL/day of Mw intradermally or a matching placebo for three consecutive days. The primary outcome was 28-day mortality. The co-primary outcome was the distribution of clinical status assessed on a seven-point ordinal scale ranging from discharged (category 1) to death (category 7) on study days 14, 21, and 28. The key secondary outcomes were the change in sequential organ failure assessment (SOFA) score on days 7 and 14 compared to the baseline, treatment-emergent adverse events, and others. RESULTS: We included 273 subjects (136 Mw, 137 placebo). The use of Mw did not improve 28-day survival (Mw vs. placebo, 18 [13.2%] vs. 12 [8.8%], P = 0.259) or the clinical status on days 14 (odds ratio [OR], 1.33; 95% confidence intervals [CI], 0.79-2.3), 21 (OR, 1.49; 95% CI, 0.83-2.7) or 28 (OR, 1.49; 95% CI, 0.79-2.8) between the two study arms. There was no difference in the delta SOFA score or other secondary outcomes between the two groups. We observed higher injection site reactions with Mw. CONCLUSION: Mw did not reduce 28-day mortality or improve clinical status on days 14, 21 and 28 compared to placebo in patients with severe COVID-19. [Trial identifier: CTRI/2020/04/024846].

2.
3 Biotech ; 10(8): 342, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32714737

RESUMO

False smut disease of rice caused by Ustilaginoidea virens, is an emerging threat to rice cultivation worldwide due to its detrimental effects on grain yield and quality. False smut disease severity was 4.44‒17.22% during a roving survey in Kharif 2016 in the four different rice ecosystems of Karnataka, India. Further, 15 pathogen isolates representing four different ecosystems were studied for their virulence and morphometric diversity. Among the 15 strains studied, most virulent strains Uv-Gvt was selected for whole genome sequencing in Illumina NextSeq 500 platform using 2 × 150 bp sequencing chemistry. The total assembled genome of Uv-Gvt was 26.96 Mb, which comprised of 9157 scaffolds with an N50 value of 15,934 bp and 6628 protein-coding genes. Next, the comparative genomic study revealed a similar gene inventory as UV-8b and MAFF 236576 strains reported from China and Japan, respectively. But, 1756 genes were unique to Uv-Gvt strain. The Uv-Gvt genome harbors 422 putative host-pathogen interacting genes compared to 359 and 520 genes in UV-8b and MAFF 236576 strains, respectively. The variant analysis revealed low genetic diversity (0.073‒0.088%) among U. virens strains. Further, phylogenetic analysis using 250 single copy orthologs genes of U. virens revealed a distinct phylogeny and an approximate divergence time. Our study, report the genomic resource of rice false smut pathogen from India, where the disease originated, and this information will have broader applicability in understanding the pathogen population diversity.

3.
OMICS ; 24(12): 726-742, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33170083

RESUMO

Coconut (Cocos nucifera L.), an important source of vegetable oil, nutraceuticals, functional foods, and housing materials, provides raw materials for a repertoire of industries engaged in the manufacture of cosmetics, soaps, detergents, paints, varnishes, and emulsifiers, among other products. The palm plays a vital role in maintaining and promoting the sustainability of farming systems of the fragile ecosystems of islands and coastal regions of the tropics. In this study, we present the genome of a dwarf coconut variety "Chowghat Green Dwarf" (CGD) from India, possessing enhanced resistance to root (wilt) disease. Utilizing short reads from the Illumina HiSeq 4000 platform and long reads from the Pacific Biosciences RSII platform, we have assembled the draft genome assembly of 1.93 Gb. The genome is distributed over 26,855 scaffolds, with ∼81.56% of the assembled genome present in scaffolds of lengths longer than 50 kb. About 77.29% of the genome was composed of transposable elements and repeats. Gene prediction yielded 51,953 genes, which upon stringent filtering, based on Annotation Edit Distance, resulted in 13,707 genes, which coded for 11,181 proteins. Among these, we gathered transcript level evidence for a total of 6828 predicted genes based on the RNA-Seq data from different coconut tissues, since they presented assembled transcripts within the genome annotation coordinates. A total of 112 nucleotide-binding and leucine-rich repeat loci, belonging to six classes, were detected. We have also undertaken the assembly and annotation of the CGD chloroplast and mitochondrial genomes. The availability of the dwarf coconut genome shall prove invaluable for deducing the origin of dwarf coconut cultivars, dissection of genes controlling plant habit and fruit color, and accelerated breeding for improved agronomic traits.


Assuntos
Cocos/genética , Biologia Computacional , Resistência à Doença/genética , Genoma de Planta , Genômica , Anotação de Sequência Molecular , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Nutrigenômica/métodos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa