Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nutr ; 61(6): 3189-3200, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35435502

RESUMO

PURPOSE: Physiological parameters such as adiposity and age are likely to influence protein digestion and utilization. The aim of this study was to evaluate the combined effects of age and adiposity on casein protein and amino acid true digestibility and its postprandial utilization in rats. METHODS: Four groups were included (n = 7/8): 2 months/normal adiposity, 2 months/high adiposity, 11 months/normal adiposity and 11 months/high adiposity. Rats were given a calibrated meal containing 15N-labeled casein (Ingredia, Arras, France) and were euthanized 6 h later. Digestive contents were collected to assess protein and amino acid digestibilities. 15N enrichments were measured in plasma and urine to determine total body deamination. Fractional protein synthesis rate (FSR) was determined in different organs using a flooding dose of 13C valine. RESULTS: Nitrogen and amino acid true digestibility of casein was around 95-96% depending on the group and was increased by 1% in high adiposity rats (P = 0.04). Higher adiposity levels counteracted the increase in total body deamination (P = 0.03) that was associated with older age. Significant effects of age (P = 0.006) and adiposity (P = 0.002) were observed in the muscle FSR, with age decreasing it and adiposity increasing it. CONCLUSION: This study revealed that a higher level of adiposity resulted in a slight increase in protein and individual amino acid true digestibility values and seemed to compensate for the metabolic postprandial protein alterations observed at older age.


Assuntos
Caseínas , Íleo , Adiposidade , Envelhecimento , Aminoácidos/metabolismo , Animais , Caseínas/metabolismo , Proteínas Alimentares/metabolismo , Digestão , Íleo/metabolismo , Ratos
2.
Food Funct ; 14(9): 4173-4182, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37066543

RESUMO

Research on new strategies to regulate glucose homeostasis to prevent or manage type 2 diabetes is a critical challenge. Several studies have shown that protein-rich diets could improve glucose homeostasis. Whey protein hydrolysis allows the release of amino acids and bioactive peptides, which exert numerous well-documented bioactivities. This study evaluates and compares the hypoglycemic potential of a whey protein hydrolysate and a whey protein isolate after static in vitro simulated gastrointestinal digestion (SGID) using the INFOGEST protocol. The peptide molecular mass distributions of the digested samples were evaluated by size exclusion chromatography and show that after digestion, the whey hydrolysate is significantly more hydrolyzed. After SGID, the whey protein hydrolysate induces a significative greater secretion of GLP-1 after two hours of contact with the enteroendocrine STC-1 cell line than the whey protein after isolation. In addition, the digested whey hydrolysate increases preproglucagon (GCG) and pro-convertase-1 (PCSK1) expression. The digested hydrolysate also inhibits the DPP-IV activity after an intestinal barrier passage challenge using a Caco-2/HT29-MTX mixed-cell model. Our results highlight that the prehydrolysis of whey proteins modify the intestinal peptidome, leading to a potentially greater hypoglycemic effect. This study confirms the previously observed in vitro hypoglycemic effect of this hydrolysate and evidences the beneficial impact of the industrial hydrolysis process.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Proteínas do Soro do Leite/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células CACO-2 , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia , Homeostase , Glucose
3.
Food Chem ; 415: 135779, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36863238

RESUMO

We aimed to assess if casein structure affects its digestion and its subsequent amino acid delivery kinetic. Higher nitrogen levels were recovered in dialysates after in vitro digestions of sodium caseinate (SC, formed of small aggregates) compared to micellar casein (MC, native form of casein) and calcium caseinate (CC, intermediate structure). Likewise, plasma indispensable amino-acid concentration peak was higher after SC compared to MC or CC ingestion in healthy volunteers in a randomized, double blind, cross-over study. In pigs, gamma-scintigraphy using labelled meals revealed that SC was mainly localized in the proximal part of the stomach whereas MC was distributed in the whole gastric cavity. Caseins were found in both solid and liquid phases and partly hydrolyzed casein in the solid phase shortly after SC drink ingestion. These data support the concept of slow (MC) and rapid (SC) casein depending of casein structure, likely due to their intra-gastric clotting properties.


Assuntos
Aminoácidos , Caseínas , Estudos Cross-Over , Digestão , Animais , Caseínas/química , Caseínas/metabolismo , Estômago/metabolismo , Suínos , Humanos , Voluntários Saudáveis
4.
Food Res Int ; 169: 112814, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254390

RESUMO

OBJECTIVE: The aim of this study was to analyze the protein digestibility and postprandial metabolism in rats of milk protein matrices obtained by different industrial processes. MATERIAL AND METHODS: The study was conducted on Wistar rats that consumed a meal containing different 15N-labeled milk proteins. Four milk matrices were tested: native micellar caseins (C1), caseins low in calcium (C2 low Ca2+), a matrix containing a ratio 63:37 of caseins and whey proteins (CW2) and whey proteins alone (W). Blood and urine were collected during the postprandial period and rats were euthanized 6 h after meal intake to collect digestive contents and organs. RESULTS: Orocaecal digestibility values of amino acids ranged between 96.0 ± 0.2% and 96.6 ± 0.4% for C1-, C2 low Ca2+- and W-matrices, while this value was significantly lower for CW2 matrix (92.4 ± 0.5%). More dietary nitrogen was sequestered in the splanchnic area (intestinal mucosa and liver) as well as in plasma proteins after ingestion of W matrix, especially compared to the C1- and C2 low Ca2+-matrices. Peptidomic analysis showed that more milk protein-derived peptides were identified in the caecum of rats after the ingestion of the matrices containing caseins compared to W matrix. CONCLUSION: We found that demineralization of micellar caseins did not modify its digestibility and postprandial metabolism. The low digestibility of the modified casein-to-whey ratio matrix may be ascribed to a lower accessibility of the protein to digestive enzymes due to changes in the protein structure, while the higher nitrogen splanchnic retention after ingestion of whey was probably due to the fast assimilation of its protein content. Finally, our results showed that industrial processes that modify the structure and/or composition of milk proteins influence protein digestion and utilization.


Assuntos
Aminoácidos , Proteínas do Leite , Ratos , Animais , Proteínas do Leite/química , Aminoácidos/metabolismo , Caseínas/química , Proteínas do Soro do Leite , Período Pós-Prandial , Ratos Wistar , Nitrogênio/metabolismo , Peptídeos
5.
Foods ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200404

RESUMO

Protein hydrolysates are, in general, mixtures of amino acids and small peptides able to supply the body with the constituent elements of proteins in a directly assimilable form. They are therefore characterised as products with high nutritional value. However, hydrolysed proteins display an unpleasant bitter taste and possible off-flavours which limit the field of their nutrition applications. The successful identification and characterisation of bitter protein hydrolysates and, more precisely, the peptides responsible for this unpleasant taste are essential for nutritional research. Due to the large number of peptides generated during hydrolysis, there is an urgent need to develop methods in order to rapidly characterise the bitterness of protein hydrolysates. In this article, two enzymatic hydrolysis kinetics of micellar milk caseins were performed for 9 h. For both kinetics, the optimal time to obtain a hydrolysate with appreciable organoleptic qualities is 5 h. Then, the influence of the presence or absence of peptides and their intensity over time compared to the different sensory characteristics of hydrolysates was studied using heat maps, random forests and regression trees. A total of 22 peptides formed during the enzymatic proteolysis of micellar caseins and influencing the bitterness the most were identified. These methods represent simple and efficient tools to identify the peptides susceptibly responsible for bitterness intensity and predict the main sensory feature of micellar casein enzymatic hydrolysates.

6.
Foods ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34574245

RESUMO

The identification of phosphopeptides is currently a challenge when they are part of a complex matrix of peptides, such as a milk protein enzymatic hydrolysate. This challenge increases with both the number of phosphorylation sites on the phosphopeptides and their amino acid length. Here, this paper reports a four-phase strategy from an enzymatic casein hydrolysate before a mass spectrometry analysis in order to enhance the identification of phosphopeptides and phosphosites: (i) the control protein hydrolysate, (ii) a two-step enzymatic dephosphorylation of the latter, allowing for the almost total dephosphorylation of peptides, (iii) a one-step enzymatic dephosphorylation, allowing for the partial dephosphorylation of the peptides and (iv) an additional endoGluC enzymatic hydrolysis, allowing for the cleavage of long-size peptides into shorter ones. The reverse-phase high-pressure liquid chromatography-tandem mass spectrometry (RP-HPLC-MS/MS) analyses of hydrolysates that underwent this four-phase strategy allowed for the identification of 28 phosphorylation sites (90%) out of the 31 referenced in UniprotKB/Swiss-Prot (1 June 2021), compared to 17 sites (54%) without the latter. The alpha-S2 casein phosphosites, referenced by their similarity in the UniProt database, were experimentally identified, whereas pSer148, pThr166 and pSer187 from a multiphosphorylated long-size kappa-casein were not. Data are available via ProteomeXchange with identifier PXD027132.

7.
Foods ; 9(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987808

RESUMO

Enzymatic hydrolysis of food proteins generally changes the techno-functional, nutritional, and organoleptic properties of hydrolyzed proteins. As a result, protein hydrolysates have an important interest in the food industries. However, they tend to be characterized by a bitter taste and some off-flavors, which limit their use in the food industry. These tastes and aromas come from peptides, amino acids, and volatile compounds generated during hydrolysis. In this article, sixteen more or less bitter enzymatic hydrolysates produced from a milk protein liquid fraction enriched in micellar caseins using commercially available, food-grade proteases were subjected to a sensory analysis using a trained and validated sensory panel combined to a peptidomics approach based on the peptide characterization by reverse-phase high-performance liquid chromatography, high-resolution mass spectrometry, and bioinformatics software. The comparison between the sensory characteristics and the principal components of the principal component analysis (PCA) of mass spectrometry data reveals that peptidomics constitutes a convenient, valuable, fast, and economic intermediate method to evaluating the bitterness of enzymatic hydrolysates, as a trained sensory panel can do it.

8.
Foods ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143332

RESUMO

The goal of this study was to determine the impact of industrial processes on the digestion of six milk protein matrices using the harmonized INFOGEST in vitro static digestion protocol. First, this method was optimized to simple protein matrices using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) to compare the intestinal protein hydrolysis obtained with increasing quantities of pancreatin. Similar results were achieved with the originally required pancreatin amount (trypsin activity of 100 U.mL-1) and with a quantity of pancreatin equivalent to a trypsin activity of 27.3 U.mL-1, which was thus used to perform the in vitro digestion of the milk matrices. Molecular weight profiles, peptide heterogeneity from LC-MS/MS data, calcium, free amino acid, and peptide concentrations were determined in the gastric and intestinal phases to compare the milk protein digests. Results showed that the industrial process affected not only the protein distribution of the matrices but also most likely the protein structures. Indeed, differences arose in terms of peptide populations generated when the caseins were reticulated or when their calcium concentrations were reduced.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa