Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Chem ; 84: 107161, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31787580

RESUMO

The present study is focused on a series of newly synthesized 1-aryl-3-ethyl-3-methylsuccinimide derivatives, as potential anticonvulsants. The retention behavior of eleven succinimide derivatives was determined by using reversed phase high performance liquid chromatography (RP-HPLC) and reversed phase high performance thin layer chromatography (RP-HPTLC). The estimated retention behavior was correlated with partition (logP) and distribution coefficients (logD). These high correlations pointed out that the determined retention parameters (logk0 and RM0) can be considered chromatographic (anisotropic) lipophilicity of the studied succinimide derivatives. The structural properties, which dominantly affect the chromatographic lipophilicity, were determined as well. The significant correlations between the chromatographic lipophilicity and plasma protein binding (PPB), Madin-Darby Canine Kidney (MDCK) cells permeability, volume of distribution (Vd) and absorption constant (Ka) indicate the strong influence of lipophilicity on pharmacokinetics of 1-aryl-3-ethyl-3-methylsuccinimide derivatives. These derivatives have also been tested applying Comprehensive Medicinal Chemistry (CMC) drug-like rules which confirmed their drug-like properties. Besides, their blood-brain penetration (BBB) ability has been estimated applying the set of Clark's rules and by using Pre-ADMET software. Regarding toxicity, it was predicted that only one compound from the set might have toxic effects by blocking the hERG potassium channel. The present study reveals which molecular features in the structure of novel succinimide derivatives could be crucial for their lipophilicity, and consequently for their pharmacokinetic properties. The results indicate that the newly synthesized series of succinimide derivatives should be further considered in design of novel anticonvulsants.


Assuntos
Anticonvulsivantes/química , Succinimidas/química , Animais , Anisotropia , Anticonvulsivantes/farmacocinética , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Simulação por Computador , Cães , Humanos , Interações Hidrofóbicas e Hidrofílicas , Absorção Intestinal , Células Madin Darby de Rim Canino , Succinimidas/farmacocinética
2.
J Chromatogr A ; 1628: 461439, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822979

RESUMO

Numerous structurally different amides and imides including succinimide derivatives exhibit diverse bioactive potential. The development of new compounds requires rationalization in the design in order to provide structural changes that guarantee favorable physico-chemical properties, pharmacological activity and safety. In the present research, a comprehensive study with comparison of the chromatographic lipophilicity and other physico-chemical properties of five groups of 1-arylsuccinimide derivatives was conducted. The chemometric analysis of their physico-chemical properties was carried out by using unsupervised (hierarchical cluster analysis and principal component analysis) and supervised pattern recognition methods (linear discriminant analysis), while the correlations between the in silico molecular features and chromatographic lipophilicity were examined applying linear and non-linear Quantitative Structure-Retention Relationship (QSRR) approaches. The main aim of the conducted research was to determine similarities and dissimilarities among the studied 1-arylsuccinimides, to point out the molecular features which have significant influence on their lipophilicity, as well as to establish high-quality QSRR models which can be used in prediction of chromatographic lipophilicity of structurally similar 1-arylsuccinimides. This study is a continuation of analysis and determination of the physico-chemical properties of 1-arylsuccinimides which could be important guidelines in further in vitro and eventually in vivo studies of their biological potential.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia em Camada Fina , Relação Quantitativa Estrutura-Atividade , Solventes/química , Succinimidas/química , Análise por Conglomerados , Simulação por Computador , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa