Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Inherit Metab Dis ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606592

RESUMO

Due to the low number of patients, rare genetic diseases are a special challenge for the development of therapies, especially for diseases that result from numerous, patient-specific pathogenic variants. Precision medicine makes use of various kinds of molecular information about a specific variant, so that the possibilities for an effective therapy based on the molecular features of the variants can be elucidated. The attention to personalized precision therapies has increased among scientists and clinicians, since the "single drug for all patients" approach does not allow the classification of individuals in subgroups according to the differences in the disease genotype or phenotype. This review article summarizes some approaches of personalized precision medicine that can be used for a cost-effective and fast development of therapies, even for single patients. We have focused on specific examples on inborn errors of metabolism, with special attention on drug repurposing. Furthermore, we provide an overview of cell culture models that are suitable for precision medicine approaches.

2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982794

RESUMO

Novel treatment strategies are emerging for rare, genetic diseases, resulting in clinical trials that require adequate biomarkers for the assessment of the treatment effect. For enzyme defects, biomarkers that can be assessed from patient serum, such as enzyme activity, are highly useful, but the activity assays need to be properly validated to ensure a precise, quantitative measurement. Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by the deficiency of the lysosomal hydrolase aspartylglucosaminidase (AGA). We have here established and validated a fluorometric AGA activity assay for human serum samples from healthy donors and AGU patients. We show that the validated AGA activity assay is suitable for the assessment of AGA activity in the serum of healthy donors and AGU patients, and it can be used for diagnostics of AGU and, potentially, for following a treatment effect.


Assuntos
Aspartilglucosaminúria , Aspartilglucosilaminase , Doenças por Armazenamento dos Lisossomos , Humanos , Aspartilglucosilaminase/genética , Aspartilglucosaminúria/genética , Doenças por Armazenamento dos Lisossomos/genética , Lisossomos
3.
J Mol Cell Cardiol ; 126: 86-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452906

RESUMO

BACKGROUND: The intercalated disc (ID) is important for cardiac remodeling and has become a subject of intensive research efforts. However, as yet the composition of the ID has still not been conclusively resolved and the role of many proteins identified in the ID, like Flotillin-2, is often unknown. The Flotillin proteins are known to be involved in the stabilization of cadherins and desmosomes in the epidermis and upon cancer development. However, their role in the heart has so far not been investigated. Therefore, in this study, we aimed at identifying the role of Flotillin-1 and Flotillin-2 in the cardiac ID. METHODS: Location of Flotillins in human and murine cardiac tissue was evaluated by fluorescent immunolabeling and co-immunoprecipitation. In addition, the effect of Flotillin knockout (KO) on proteins of the ID and in electrical excitation and conduction was investigated in cardiac samples of wildtype (WT), Flotillin-1 KO, Flotilin-2 KO and Flotilin-1/2 double KO mice. Consequences of Flotillin knockdown (KD) on cardiac function were studied (patch clamp and Multi Electrode Array (MEA)) in neonatal rat cardiomyocytes (NRCMs) transfected with siRNAs against Flotillin-1 and/or Flotillin-2. RESULTS: First, we confirmed presence in the ID and mutual binding of Flotillin-1 and Flotillin-2 in murine and human cardiac tissue. Flotillin KO mice did not show cardiac fibrosis, nor hypertrophy or changes in expression of the desmosomal ID proteins. However, protein expression of the cardiac sodium channel NaV1.5 was significantly decreased in Flotillin-1 and Flotillin-1/2 KO mice compared to WT mice. In addition, sodium current density showed a significant decrease upon Flotillin-1/2 KD in NRCMs as compared to scrambled siRNA-transfected NRCMs. MEA recordings of Flotillin-2 KD NRCM cultures showed a significantly decreased spike amplitude and a tendency of a reduced spike slope when compared to control and scrambled siRNA-transfected cultures. CONCLUSIONS: In this study, we demonstrate the presence of Flotillin-1, in addition to Flotillin-2 in the cardiac ID. Our findings indicate a modulatory role of Flotillins on NaV1.5 expression at the ID, with potential consequences for cardiac excitation.


Assuntos
Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Animais , Animais Recém-Nascidos , Conexina 43/metabolismo , Humanos , Ativação do Canal Iônico , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ratos Wistar
4.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247885

RESUMO

Pemphigus Vulgaris is an autoimmune disease that results in blister formation in the epidermis and in mucosal tissues due to antibodies recognizing desmosomal cadherins, mainly desmoglein-3 and -1. Studies on the molecular mechanisms of Pemphigus have mainly been carried out using the spontaneously immortalized human keratinocyte cell line HaCaT or in primary keratinocytes. However, both cell systems have suboptimal features, with HaCaT cells exhibiting a large number of chromosomal aberrations and mutated p53 tumor suppressor, whereas primary keratinocytes are short-lived, heterogeneous and not susceptible to genetic modifications due to their restricted life-span. We have here tested the suitability of the commercially available human keratinocyte cell line hTert/KER-CT as a model system for research on epidermal cell adhesion and Pemphigus pathomechanisms. We here show that hTert cells exhibit a calcium dependent expression of desmosomal cadherins and are well suitable for typical assays used for studies on Pemphigus, such as sequential detergent extraction and Dispase-based dissociation assay. Treatment with Pemphigus auto-antibodies results in loss of monolayer integrity and altered localization of desmoglein-3, as well as loss of colocalization with flotillin-2. Our findings demonstrate that hTert cells are well suitable for studies on epidermal cell adhesion and Pemphigus pathomechanisms.


Assuntos
Desmossomos/genética , Desmossomos/metabolismo , Queratinócitos/metabolismo , Pênfigo/etiologia , Pênfigo/metabolismo , Telomerase/genética , Autoanticorpos/imunologia , Biomarcadores , Adesão Celular , Linhagem Celular , Linhagem Celular Transformada , Desmossomos/imunologia , Imunofluorescência , Expressão Gênica , Humanos , Queratinócitos/imunologia , Modelos Biológicos , Pênfigo/patologia
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 668-675, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247835

RESUMO

Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by mutations in the gene for aspartylglucosaminidase (AGA). This enzyme participates in glycoprotein degradation in lysosomes. AGU results in progressive mental retardation, and no curative therapy is currently available. We have here characterized the consequences of AGA gene mutations in a compound heterozygous patient who exhibits a missense mutation producing a Ser72Pro substitution in one allele, and a nonsense mutation Trp168X in the other. Ser72 is not a catalytic residue, but is required for the stabilization of the active site conformation. Thus, Ser72Pro exchange impairs the autocatalytic activation of the AGA precursor, and results in a considerable reduction of the enzyme activity and in altered AGA precursor processing. Betaine, which can partially rescue the AGA activity in AGU patients carrying certain missense mutations, turned out to be ineffective in the case of Ser72Pro substitution. The Trp168X nonsense allele results in complete lack of AGA polypeptide due to nonsense-mediated decay (NMD) of the mRNA. Amlexanox, which inhibits NMD and causes a translational read-through, facilitated the synthesis of a full-length, functional AGA protein from the nonsense allele. This could be demonstrated as presence of the AGA polypeptide and increased enzyme activity upon Amlexanox treatment. Furthermore, in the Ser72Pro/Trp168X expressing cells, Amlexanox induced a synergistic increase in AGA activity and polypeptide processing due to enhanced processing of the Ser72Pro polypeptide. Our data show for the first time that Amlexanox might provide a valid therapy for AGU.


Assuntos
Aminopiridinas/uso terapêutico , Aspartilglucosaminúria/tratamento farmacológico , Aspartilglucosaminúria/genética , Aspartilglucosilaminase/genética , Códon sem Sentido , Substituição de Aminoácidos , Aminopiridinas/farmacologia , Células Cultivadas , Criança , Códon sem Sentido/efeitos dos fármacos , Feminino , Células HEK293 , Células HeLa , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/genética , Mutação de Sentido Incorreto
6.
Int J Mol Sci ; 19(2)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29470438

RESUMO

Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of ß-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.


Assuntos
Cerebelo/enzimologia , Cerebelo/patologia , Gangliosídeo G(M3)/metabolismo , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/patologia , Animais , Toxina da Cólera/metabolismo , Modelos Animais de Doenças , Gangliosídeo G(M3)/química , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo
7.
Int J Mol Sci ; 18(4)2017 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-28346360

RESUMO

Aspartylglucosaminidase (AGA) is a lysosomal hydrolase that participates in the breakdown of glycoproteins. Defects in the AGA gene result in a lysosomal storage disorder, aspartylglucosaminuria (AGU), that manifests mainly as progressive mental retardation. A number of AGU missense mutations have been identified that result in reduced AGA activity. Human variants that contain either Ser or Thr in position 149 have been described, but it is unknown if this affects AGA processing or activity. Here, we have directly compared the Ser149/Thr149 variants of AGA and show that they do not differ in terms of relative specific activity or processing. Therefore, Thr149 AGA, which is the rare variant, can be considered as a neutral or benign variant. Furthermore, we have here produced codon-optimized versions of these two variants and show that they are expressed at significantly higher levels than AGA with the natural codon-usage. Since optimal AGA expression is of vital importance for both gene therapy and enzyme replacement, our data suggest that use of codon-optimized AGA may be beneficial for these therapy options.


Assuntos
Aspartilglucosilaminase/metabolismo , Aspartilglucosilaminase/química , Aspartilglucosilaminase/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Frequência do Gene , Genótipo , Células HEK293 , Células HeLa , Humanos , Doenças por Armazenamento dos Lisossomos/enzimologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/química , Lisossomos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transfecção
8.
Int J Mol Sci ; 16(3): 6447-63, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25803106

RESUMO

Acetylcholine and its receptors regulate numerous cellular processes in keratinocytes and other non-neuronal cells. Muscarinic acetylcholine receptors are capable of transactivating the epidermal growth factor receptor (EGFR) and, downstream thereof, the mitogen-activated protein kinase (MAPK) cascade, which in turn regulates transcription of genes involved in cell proliferation and migration. We here show that cholinergic stimulation of human HaCaT keratinocytes results in increased transcription of matrix metalloproteinase MMP-3 as well as several ligands of the epidermal growth factor family. Since both metalloproteinases and the said ligands are involved in the transactivation of the EGFR, this transcriptional upregulation may provide a positive feed-forward loop for EGFR/MAPK activation. We here also show that the cholinergic EGFR and MAPK activation and the upregulation of MMP-3 and EGF-like ligands are dependent on the expression of flotillin-1 which we have previously shown to be a regulator of MAPK signaling.


Assuntos
Receptores ErbB/metabolismo , Queratinócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Western Blotting , Linhagem Celular , Humanos
9.
Int J Mol Sci ; 15(11): 21433-54, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25421240

RESUMO

Non-neuronal acetylcholine plays a substantial role in the human skin by influencing adhesion, migration, proliferation and differentiation of keratinocytes. These processes are regulated by the Mitogen-Activated Protein (MAP) kinase cascade. Here we show that in HaCaT keratinocytes all five muscarinic receptor subtypes are expressed, but M1 and M3 are the subtypes involved in mitogenic signaling. Stimulation with the cholinergic agonist carbachol leads to activation of the MAP kinase extracellular signal regulated kinase, together with the protein kinase Akt. The activation is fully dependent on the transactivation of the epidermal growth factor receptor (EGFR), which even appears to be the sole pathway for the muscarinic receptors to facilitate MAP kinase activation in HaCaT cells. The transactivation pathway involves a triple-membrane-passing process, based on activation of matrix metalloproteases, and extracellular ligand release; whereas phosphatidylinositol 3-kinase, Src family kinases or protein kinase C do not appear to be involved in MAP kinase activation. Furthermore, phosphorylation, ubiquitination and endocytosis of the EGF receptor after cholinergic transactivation are different from that induced by a direct stimulation with EGF, suggesting that ligands other than EGF itself mediate the cholinergic transactivation.


Assuntos
Receptores ErbB/genética , Queratinócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Receptores Muscarínicos/genética , Ativação Transcricional/genética , Linhagem Celular , Endocitose/genética , Ativação Enzimática/genética , Fator de Crescimento Epidérmico/genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosforilação/genética , Proteína Quinase C/genética , Transdução de Sinais/genética , Ubiquitinação/genética , Quinases da Família src/genética
10.
J Biol Chem ; 287(10): 7265-78, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22232557

RESUMO

Our previous work has shown that the membrane microdomain-associated flotillin proteins are potentially involved in epidermal growth factor (EGF) receptor signaling. Here we show that knockdown of flotillin-1/reggie-2 results in reduced EGF-induced phosphorylation of specific tyrosines in the EGF receptor (EGFR) and in inefficient activation of the downstream mitogen-activated protein (MAP) kinase and Akt signaling. Although flotillin-1 has been implicated in endocytosis, its depletion affects neither the endocytosis nor the ubiquitination of the EGFR. However, EGF-induced clustering of EGFR at the cell surface is altered in cells lacking flotillin-1. Furthermore, we show that flotillins form molecular complexes with EGFR in an EGF/EGFR kinase-independent manner. However, knockdown of flotillin-1 appears to affect the activation of the downstream MAP kinase signaling more directly. We here show that flotillin-1 forms a complex with CRAF, MEK1, ERK, and KSR1 (kinase suppressor of RAS) and that flotillin-1 knockdown leads to a direct inactivation of ERK1/2. Thus, flotillin-1 plays a direct role during both the early phase (activation of the receptor) and late (activation of MAP kinases) phase of growth factor signaling. Our results here unveil a novel role for flotillin-1 as a scaffolding factor in the regulation of classical MAP kinase signaling. Furthermore, our results imply that other receptor-tyrosine kinases may also rely on flotillin-1 upon activation, thus suggesting a general role for flotillin-1 as a novel factor in receptor-tyrosine kinase/MAP kinase signaling.


Assuntos
Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Ativação Enzimática/fisiologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Proteínas de Membrana/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
BMC Cancer ; 13: 575, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304721

RESUMO

BACKGROUND: Flotillin-1 and flotillin-2 are two homologous and ubiquitously expressed proteins that are involved in signal transduction and membrane trafficking. Recent studies have reported that flotillins promote breast cancer progression, thus making them interesting targets for breast cancer treatment. In the present study, we have investigated the underlying molecular mechanisms of flotillins in breast cancer. METHODS: Human adenocarcinoma MCF7 breast cancer cells were stably depleted of flotillins by means of lentivirus mediated short hairpin RNAs. Western blotting, immunofluorescence and quantitative real-time PCR were used to analyze the expression of proteins of the epidermal growth factor receptor (EGFR) family. Western blotting was used to investigate the effect of EGFR stimulation or inhibition as well as phosphatidylinositol 3-kinase (PI3K) inhibition on mitogen activated protein kinase (MAPK) signaling. Rescue experiments were performed by stable transfection of RNA intereference resistant flotillin proteins. RESULTS: We here show that stable knockdown of flotillin-1 in MCF7 cells resulted in upregulation of EGFR mRNA and protein expression and hyperactivation of MAPK signaling, whereas ErbB2 and ErbB3 expression were not affected. Treatment of the flotillin knockdown cells with an EGFR inhibitor reduced the MAPK signaling, demonstrating that the increased EGFR expression and activity is the cause of the increased signaling. Stable ectopic expression of flotillins in the knockdown cells reduced the increased EGFR expression, demonstrating a direct causal relationship between flotillin-1 expression and EGFR amount. Furthermore, the upregulation of EGFR was dependent on the PI3K signaling pathway which is constitutively active in MCF7 cells, and PI3K inhibition resulted in reduced EGFR expression. CONCLUSIONS: This study demonstrates that flotillins may not be suitable as cancer therapy targets in cells that carry certain other oncogenic mutations such as PI3K activating mutations, as unexpected effects are prone to emerge upon flotillin knockdown which may even facilitate cancer cell growth and proliferation.


Assuntos
Receptores ErbB/metabolismo , Proteínas de Membrana/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama , Proliferação de Células , Cromonas/farmacologia , Endocitose , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Proteico , Regulação para Cima
12.
Int J Mol Sci ; 14(3): 4854-84, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455463

RESUMO

The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.

13.
Carcinogenesis ; 33(3): 620-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22180572

RESUMO

Chronic inflammation and selenium deficiency are considered as risk factors for colon cancer. The protective effect of selenium might be mediated by specific selenoproteins, such as glutathione peroxidases (GPx). GPx-1 and -2 double knockout, but not single knockout mice, spontaneously develop ileocolitis and intestinal cancer. Since GPx2 is induced by the chemopreventive sulforaphane (SFN) via the nuclear factor E2-related factor 2 (Nrf2)/Keap1 system, the susceptibility of GPx2-KO and wild-type (WT) mice to azoxymethane and dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis was tested under different selenium states and SFN applications. WT and GPx2-KO mice were grown on a selenium-poor, -adequate or -supranutritional diet. SFN application started either 1 week before (SFN4) or along with (SFN3) a single AOM application followed by DSS treatment for 1 week. Mice were assessed 3 weeks after AOM for colitis and Nrf2 target gene expression and after 12 weeks for tumorigenesis. NAD(P)H:quinone oxidoreductases, thioredoxin reductases and glutathione-S-transferases were upregulated in the ileum and/or colon by SFN, as was GPx2 in WT mice. Inflammation scores were more severe in GPx2-KO mice and highest in selenium-poor groups. Inflammation was enhanced by SFN4 in both genotypes under selenium restriction but decreased in selenium adequacy. Total tumor numbers were higher in GPx2-KO mice but diminished by increasing selenium in both genotypes. SFN3 reduced inflammation and tumor multiplicity in both Se-adequate genotypes. Tumor size was smaller in Se-poor GPx2-KO mice. It is concluded that GPx2, although supporting tumor growth, inhibits inflammation-mediated tumorigenesis, but the protective effect of selenium does not strictly depend on GPx2 expression. Similarly, SFN requires selenium but not GPx2 for being protective.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Glutationa Peroxidase/metabolismo , Inflamação/tratamento farmacológico , Selênio/farmacologia , Tiocianatos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Azoximetano/farmacologia , Transformação Celular Neoplásica , Colite/induzido quimicamente , Colite/genética , Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Sulfato de Dextrana/farmacologia , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/genética , Glutationa Transferase/biossíntese , Íleo/metabolismo , Isotiocianatos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD(P)H Desidrogenase (Quinona)/biossíntese , Fator 2 Relacionado a NF-E2/biossíntese , Selênio/deficiência , Selênio/metabolismo , Sulfóxidos , Tiorredoxina Dissulfeto Redutase/biossíntese
14.
Cells ; 11(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35053409

RESUMO

Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1-6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.


Assuntos
Cisteína Endopeptidases/genética , Terapia de Alvo Molecular , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Hipóxia Tumoral/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hexoquinase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
15.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831035

RESUMO

Splicing defects caused by mutations in the consensus sequences at the borders of introns and exons are common in human diseases. Such defects frequently result in a complete loss of function of the protein in question. Therapy approaches based on antisense oligonucleotides for specific gene mutations have been developed in the past, but they are very expensive and require invasive, life-long administration. Thus, modulation of splicing by means of small molecules is of great interest for the therapy of genetic diseases resulting from splice-site mutations. Using minigene approaches and patient cells, we here show that methylxanthine derivatives and the food-derived flavonoid luteolin are able to enhance the correct splicing of the AGA mRNA with a splice-site mutation c.128-2A>G in aspartylglucosaminuria, and result in increased AGA enzyme activity in patient cells. Furthermore, we also show that one of the most common disease causing TPP1 gene variants in classic late infantile neuronal ceroid lipofuscinosis may also be amenable to splicing modulation using similar substances. Therefore, our data suggest that splice-modulation with small molecules may be a valid therapy option for lysosomal storage disorders.


Assuntos
Aspartilglucosaminúria/genética , Aspartilglucosaminúria/terapia , Luteolina/farmacologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Splicing de RNA/genética , Xantinas/farmacologia , Sequência de Aminoácidos , Aspartilglucosilaminase/química , Aspartilglucosilaminase/genética , Aspartilglucosilaminase/metabolismo , Sequência de Bases , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Homozigoto , Humanos , Luciferases de Vaga-Lume/metabolismo , Mutação/genética , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tripeptidil-Peptidase 1/genética
16.
Cells ; 10(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069698

RESUMO

Recombinant adeno-associated viruses (AAV) have emerged as an important tool for gene therapy for human diseases. A prerequisite for clinical approval is an in vitro potency assay that can measure the transduction efficiency of each virus lot produced. The AAV serotypes are typical for gene therapy bind to different cell surface structures. The binding of AAV9 on the surface is mediated by terminal galactose residues present in the asparagine-linked carbohydrates in glycoproteins. However, such terminal galactose residues are rare in cultured cells. They are masked by sialic acid residues, which is an obstacle for the infection of many cell lines with AAV9 and the respective potency assays. The sialic acid residues can be removed by enzymatic digestion or chemical treatment. Still, such treatments are not practical for AAV9 potency assays since they may be difficult to standardize. In this study, we generated human cell lines (HEK293T and HeLa) that become permissive for AAV9 transduction after a knockout of the CMP-sialic acid transporter SLC35A1. Using the human aspartylglucosaminidase (AGA) gene, we show that these cell lines can be used as a model system for establishing potency assays for AAV9-based gene therapy approaches for human diseases.


Assuntos
Aspartilglucosilaminase/genética , Dependovirus/genética , Técnicas de Inativação de Genes , Terapia Genética , Lipofuscinoses Ceroides Neuronais/terapia , Proteínas de Transporte de Nucleotídeos/genética , Transdução Genética , Aspartilglucosilaminase/metabolismo , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/genética , Proteínas de Transporte de Nucleotídeos/metabolismo
17.
Cells ; 9(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093054

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental retardation, autism, ataxia, and epileptic seizures, but the clinical picture is highly heterogeneous. So far, there is no approved curative therapy for this disease. In this review, we briefly summarize the molecular genetics of SSADH-D, the past and ongoing clinical trials, and the emerging features of the molecular pathogenesis, including redox imbalance and mitochondrial dysfunction. The main aim of this review is to discuss the potential of further therapy approaches that have so far not been tested in SSADH-D, such as pharmacological chaperones, read-through drugs, and gene therapy. Special attention will also be paid to elucidating the role of patient advocacy organizations in facilitating research and in the communication between researchers and patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/tratamento farmacológico , Deficiências do Desenvolvimento/genética , Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Terapia de Alvo Molecular/métodos , Succinato-Semialdeído Desidrogenase/deficiência , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Animais , Criança , Ensaios Clínicos como Assunto , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/fisiopatologia , Modelos Animais de Doenças , Humanos , Camundongos , Mutação , Succinato-Semialdeído Desidrogenase/química , Succinato-Semialdeído Desidrogenase/genética , Ácido gama-Aminobutírico/metabolismo
18.
Mol Cell Biol ; 25(12): 4914-23, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15923610

RESUMO

The gastrointestinal glutathione peroxidase (GI-GPx, GPx2) is a selenoprotein that was suggested to act as barrier against hydroperoxide absorption but has also been implicated in the control of inflammation and malignant growth. In CaCo-2 cells, GI-GPx was induced by t-butyl hydroquinone (tBHQ) and sulforaphane (SFN), i.e., "antioxidants" known to activate the "antioxidant response element" (ARE) via electrophilic thiol modification of Keap1 in the Nrf2/Keap1 system. The functional significance of a putative ARE in the GI-GPx promoter was validated by transcriptional activation of reporter gene constructs upon exposure to electrophiles (tBHQ, SFN, and curcumin) or overexpression of Nrf2 and by reversal of these effects by mutation of the ARE in the promoter and by overexpressed Keap1. Binding of Nrf2 to the ARE sequence in authentic gpx2 was corroborated by chromatin immunoprecipitation. Thus, the presumed natural antioxidants sulforaphane and curcumin may exert their anti-inflammatory and anticarcinogenic effects not only by induction of phase 2 enzymes but also by the up-regulation of the selenoprotein GI-GPx.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Transativadores/metabolismo , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Anticarcinógenos/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Curcumina/metabolismo , Proteínas de Ligação a DNA/genética , Genes Reporter , Glutationa Peroxidase/metabolismo , Humanos , Hidroquinonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Isotiocianatos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Elementos de Resposta , Sulfóxidos , Tiocianatos/metabolismo , Transativadores/genética
19.
Cells ; 7(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642469

RESUMO

Cell-matrix adhesion and cell migration are physiologically important processes that also play a major role in cancer spreading. In cultured cells, matrix adhesion depends on integrin-containing contacts such as focal adhesions. Flotillin-1 and flotillin-2 are frequently overexpressed in cancers and are associated with poor survival. Our previous studies have revealed a role for flotillin-2 in cell-matrix adhesion and in the regulation of the actin cytoskeleton. We here show that flotillins are important for cell migration in a wound healing assay and influence the morphology and dynamics of focal adhesions. Furthermore, anchorage-independent growth in soft agar is enhanced by flotillins. In the absence of flotillins, especially flotillin-2, phosphorylation of focal adhesion kinase and extracellularly regulated kinase is diminished. Flotillins interact with α-actinin, a major regulator of focal adhesion dynamics. These findings are important for understanding the molecular mechanisms of how flotillin overexpression in cancers may affect cell migration and, especially, enhance metastasis formation.

20.
Free Radic Biol Med ; 42(3): 315-25, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17210444

RESUMO

Based on animal models, dietary polyphenols are predicted to be promising chemopreventive agents in humans. Allspice, clove, and thyme extracts as well as defined dietary polyphenolic compounds were, therefore, tested for their ability to activate mechanisms related to phase 1 enzymes, i.e., the PXR-regulated CYP3A4 promoter, and phase 2 enzymes, i.e. the EpRE-regulated promoters of gastrointestinal glutathione peroxidase (GI-GPx) and heme oxygenase-1 (HO-1), examples of Nrf2-regulated genes. From the compounds tested, clove and thyme extracts as well as curcumin and resveratrol activated the PXR. PXR activation correlated with the activation of the CYP3A4 promoter in the case of thyme extract, curcumin, and resveratrol, but not in the case of clove extract. Allspice extract, EGCG, and quercetin did not activate PXR but enhanced CYP3A4 promoter activity. Thyme extract and quercetin activated the EpRE of HO-1. Both significantly activated the GI-GPx promoter, effects that depended on a functional EpRE. Resveratrol did not activate the isolated EpRE but enhanced the GI-GPx promoter activity, whereas clove extract even inhibited it. It is concluded that individual polyphenols as well as polyphenol-rich plant extracts may affect phase 1 and 2 enzyme expression by distinct mechanisms that must be elucidated, before potential health effects can reliably be predicted.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Flavonoides/farmacologia , Glutationa Peroxidase/biossíntese , Heme Oxigenase-1/biossíntese , Fenóis/farmacologia , Receptores de Esteroides/biossíntese , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Curcumina/farmacologia , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Suplementos Nutricionais , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Heme Oxigenase-1/genética , Humanos , Extratos Vegetais/farmacologia , Polifenóis , Receptor de Pregnano X , Regiões Promotoras Genéticas , Quercetina/farmacologia , Receptores de Esteroides/genética , Elementos de Resposta , Resveratrol , Estilbenos/farmacologia , Syzygium/química , Thymus (Planta)/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa