Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825123

RESUMO

The objectives were to investigate the effect of feeding and visiting behavior of dairy cattle on CH4 and H2 production measured with voluntary visits to the GreenFeed system (GF) and to determine whether these effects depended on basal diet (BD) and 3-nitrooxypropanol (3-NOP) supplementation. The experiment involved 64 lactating dairy cattle (146 ± 45 d in milk at the start of trial; mean ± SD) in 2 overlapping crossover trials, each consisting of 2 measurement periods. Cows within block were randomly allocated to 1 of 3 types of BD: a grass silage-based diet consisting of 30% concentrates and 70% grass silage (DM basis), a grass silage- and corn silage-mixed diet consisting of 30% concentrates, 42% grass silage, and 28% corn silage (DM basis), or a corn silage-based diet consisting of 30% concentrates, 14% grass silage, and 56% corn silage (DM basis). Each type of BD was subsequently supplemented with 0 and 60 mg 3-NOP/kg DM in one crossover, or 0 and 80 mg 3-NOP/kg DM in the other crossover. Diets were provided in feed bins which automatically recorded feed intake and feeding behavior, with additional concentrate fed in the GF. All visits to the GF that resulted in a spot measurement of both CH4 and H2 emission were analyzed in relation to feeding behavior (e.g., meal size and time interval to preceding meal) as well as GF visiting behavior (e.g., duration of visit). Feeding and GF visiting behavior was related to CH4 and H2 production measured with the GF, in particular the meal size before a GF measurement and the time interval between a GF measurement and the preceding meal. Relationships between gas production and both feeding and GF visiting behavior were affected both by type of BD and 3-NOP supplementation. With an increase of the time interval between a GF measurement and the preceding meal, CH4 production decreased with 0 mg 3-NOP/kg DM but increased with 60 and 80 mg 3-NOP/kg DM, whereas type of BD did not affect these relationships. In contrast, CH4 production increased with 0 mg 3-NOP/kg DM but decreased with 60 and 80 mg 3-NOP/kg DM upon an increase in the size of the meal preceding a GF measurement. With an increase of the time interval between a GF measurement and the preceding meal, or with a decrease of the size of the meal preceding a GF measurement, H2 production decreased for all treatments, although the effect was generally somewhat stronger for 60 and 80 mg 3-NOP/kg DM than for 0 mg 3-NOP/kg DM. Hence, the timing of GF measurements next to feeding and GF visiting behavior are essential when assessing the effect of dietary treatment on the production of CH4 and H2 in a setting where a spot sampling device such as a GF is used and where the measurements depend on voluntary visits from the cows.

2.
J Dairy Sci ; 107(8): 5556-5573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38395398

RESUMO

The objective was to determine the long-term effect of 3-nitrooxypropanol (3-NOP) on CH4 emission and milk production characteristics from dairy cows receiving 3-NOP in their diet for a full year, covering all lactation stages of the dairy cows. Sixty-four late-lactation Holstein-Friesian cows (34% primiparous) were blocked in pairs, based on expected calving date, parity, and daily milk yield. The experiment started with an adaptation period of 1 wk followed by a covariate period of 3 wk in which all cows received the same basal diet and baseline measurements were performed. Directly after, cows within a block were randomly allocated to 1 of 2 dietary treatments: a diet containing on average 69.8 mg 3-NOP/kg DM (total ration level, corrected for intake of nonsupplemented GreenFeed bait) and a diet containing a placebo. Forage composition as well as forage-to-concentrate ratio altered with lactation stage (i.e., dry period and early, mid, and late lactation). Diets were provided as a total mixed ration, and additional bait was fed in GreenFeed units (C-Lock Inc.), which were used for emission measurements. Supplementation of 3-NOP did not affect total DMI, BW, or BCS, but resulted in a 6.5% increase in the yields of energy-corrected milk and fat- and protein-corrected milk (FPCM). Furthermore, milk fat and protein as well as feed efficiency were increased upon 3-NOP supplementation. Overall, a reduction of 21%, 20%, and 27% was achieved for CH4 production (g/d), yield (g/kg DMI), and intensity (g/kg FPCM), respectively, upon 3-NOP supplementation. The CH4 mitigation potential of 3-NOP was affected by the lactation stage dependent diet to which 3-NOP was supplemented. On average, a 16%, 20%, 16%, and 26% reduction in CH4 yield (g/kg DMI) was achieved upon 3-NOP supplementation for the dry period, and early, mid, and late-lactation diets, respectively. The CH4 mitigation potential of 3-NOP was affected by the length of 3-NOP supplementation within a lactation stage dependent diet and by variation in diet composition within a lactation stage dependent diet as a result of changes in grass and corn silage silos. In conclusion, 3-NOP reduced CH4 emission from cows receiving 3-NOP for a year, with a positive effect on production characteristics. The CH4 mitigation potential of 3-NOP was influenced by diet type, diet composition, and nutrition value, and the efficacy of 3-NOP appeared to decline over time but not continuously. Associated with changes in diet composition, increased efficacy of 3-NOP was observed at the start of the trial, at the start of a new lactation, and, importantly, at the end of the trial. These results suggest that diet composition has a large effect on the efficacy of 3-NOP, perhaps even larger than the week of supplementation after first introduction of 3-NOP. More studies are needed to clarify the long-term effects of 3-NOP on CH4 emission and to further investigate what influence variation in diet composition may have on the mitigation potential of 3-NOP.


Assuntos
Dieta , Lactação , Metano , Leite , Animais , Bovinos , Lactação/efeitos dos fármacos , Feminino , Leite/química , Leite/metabolismo , Dieta/veterinária , Metano/biossíntese , Metano/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Propanóis/metabolismo , Propanóis/farmacologia
3.
Waste Manag ; 187: 79-90, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996622

RESUMO

Feed management decisions are crucial in mitigating greenhouse gas (GHG) and nitrogen (N) emissions from ruminant farming systems. However, assessing the downstream impact of diet on emissions in dairy production systems is complex, due to the multifunctional relationships between a variety of distinct but interconnected sources such as animals, housing, manure storage, and soil. Therefore, there is a need for an integral assessment of the direct and indirect GHG and N emissions that considers the underlying processes of carbon (C), N and their drivers within the system. Here we show the relevance of using a cascade of process-based (PB) models, such as Dutch Tier 3 and (Manure)-DNDC (Denitrification-Decomposition) models, for capturing the downstream influence of diet on whole-farm emissions in two contrasting case study dairy farms: a confinement system in Germany and a pasture-based system in New Zealand. Considerable variation was found in emissions on a per hectare and per head basis, and across different farm components and categories of animals. Moreover, the confinement system had a farm C emission of 1.01 kg CO2-eq kg-1 fat and protein corrected milk (FPCM), and a farm N emission of 0.0300 kg N kg-1 FPCM. In contrast, the pasture-based system had a lower farm C and N emission averaging 0.82 kg CO2-eq kg-1 FPCM and 0.006 kg N kg-1 FPCM, respectively over the 4-year period. The results demonstrate how inputs and outputs could be made compatible and exchangeable across the PB models for quantifying dietary effects on whole-farm GHG and N emissions.


Assuntos
Indústria de Laticínios , Dieta , Gases de Efeito Estufa , Esterco , Nitrogênio , Animais , Gases de Efeito Estufa/análise , Indústria de Laticínios/métodos , Esterco/análise , Bovinos , Nitrogênio/análise , Nova Zelândia , Alemanha , Modelos Teóricos , Fazendas , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa